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ABSTRACT
This report describes the critical experiments and nuclear analysis

performed at General Atomic in support of the Tungsten Water-Mod-

erated Nuclear Rocket Reactor being developed by NASA-Lewis Re-
search Center.

Descriptions of the critical facility and the critical assemblies are

given. Experimental measurements are presented and compared with

analytical results. Analytical methods are reviewed and some critical

experiments previou.c;ly performed at the NASA-Lewis Research Cen-

ter are analyzed.

L

•. Three different core configurations of 121 fuel elements were assembled;

two different pitches and both water and beryllium reflectors were used.

Excess reactivity was held down by a cadmium nitrate solution con-

tained in Z04 poison tubes throughout the core. The fuel element con-

, sisted of an assembly of enriched uranium-aluminum alloy, depleted

uranium, tungsten foil, and structural aluminum.

Experimental results include the excess reactivity available in the

cores, the worth of poison tubes and fuel element components at var-

ious locations, the temperature coefficient of the cores, flux and power

distributions in a cell and throughout the core, neutron and gamma ray

dose rate distributions throughout the core, pulsed neutron measure-

ments, and reactivity comparisons using a special fuel section of en-

riched tungsten.

Nuclear analysis of the assemblies required careful treatment of the

extreme heterogeneities of the core. A detailed analysis which accounts

for the two-dimensional cell structure, resonance overlap, and two-

region resonance effects gave good agreement between calculations and

the experimental results.
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I. INTRODUCTION

This Phase Iifinal report describes the critical experiments and

the analytical work performed under Contract SNPC-27 in support of the

Tungsten Water-Moderated Nuclear Rocket Reactor under development by

NASA - Lewis Research Center. This reactor concept utilizes tungsten

metal enriched in the low-capture cross section isotope W-184 to attain

high temperature performance c_tpabilities with a reasonable fissile

material inventory.

The report is published in two parts, each under separate cover,

to facilitate handling of the unclassified portion of the document which

is contained in this Part I. It has been organized as follows: Section II

contains a description of the Critical Facility. Section III gives the re-

sults of the critical experiment program and Section IV describes the

analytical methods and presents the results of some numerical experi-
3

rnents related to these methods. Section V describes the evaluation of

neutron cross sections performed in support of this program and presents

the results of measurements on the capture cross sections of the W iso-

topes in the energy range 0.01 to I0 e V. SectionVl contains the compari-

son between the analytical results and those of the experimental program.

Section VII gives the comparison between theory and experiment for the

Lewis Laboratory Critical experiments, Section VIII contains a discus-

sion of the results, and finally qection IX discusses conclusions and sug-

gestions for future work.

In addition to this final report the following reports and papers

were issued during the course of the contract:

1-1
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I. "Tungsten Nuclear Rocket Critical Facility, Description

and Hazards Analysis, " Tungsten Nuclear Rocket Staff,

General Atomic report, GA-_846 Rev. {1965).

2. "Technical Specification for the General Atomic Tungsten

Nuclear Rocket Critical Facility," R. G. Bardes and
J. C. Peak, General Atomic report, GA-6315 (1965).

3. "Neutronic Simulation of the Tungsten Water-Moderated
Nuclear Rocket Reactor, " S. C. Cohen, G. D. Joanou,

R. A. Moore, and J. C. Peak, General Atomic report,

GA-6141 (1965).

4. "Neutron Cross Sections for Aluminum, " G. D. Joanou

and C. A. Stevens, General Atomic report GA-5884 (1965).

5. "Neutron Cross Sections for the Tungsten Isotopes, "
G. D. Joanou and C. A. Stevens, General Atornic report

GA-5885 (1965).

6. "Neutron Cross Sections for Beryllium, " G. D. Joanou and
C. A. Stevens, GeneralAtomic report GA-5905 (1965).

7. "Neutron Cross Sections for U-235, " G. D. Joanou and

C. A. Stevens, General Atomic report GA-5944 (1965).

8. "Neutron Gross Sections for U-Z38, " G. D. Joanou and

C. A. Stevens, General Atomic report, GA-6087 Rev.
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9. "Neutron Cross Sections for the Cd Isotopes, " M. K. Drake

General Atomic report (unpublished).

I0. "The Neutron Capture Cross Section of the Tungsten Isotopes
from 0.01 to I0.0 e V, " S. J. Friesenhahn, E. Haddad, F. H.

Fr6hner, and W. M. Lopez, General Atomic report GA-683Z

(1965).

1 1. "Criticality Calculations for the Three-Inch Pitch As-Built

Core, " J. C. Peak, S. C. Cohen, M. H. Merrill, and J. M.

Lovallo, General Atomic report, GA-6484 (1965). !
i

12. "Precritical Calculations for the Z.9-in. Pitch, TWMR I
Critical Assembly, " J. C. Peak and J. M. Lovallo, i
General Atomic report, GA-6633 (1965),
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13. "Precritical Calculations for the 3.0-in. Pitch, Beryl-
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II. NUCLEAR ROCI_,ET CRITICAL FACILITY

g. 1 INTRODUCTION

The critical facility at General Atomic consists of three buildi_,gs.

They are: (1) Critical Assembly Building, (2) Fuel Assembly Building

where the fuel elements were fabricated and assembled and later modi-

fied and (B) Control Building {see Fig. g. 1). The Critical Assembly

Building {Fig. 2, Z) is a steel-reinforced concrete building having walls

and roof two feet thick for shielding and containmeut. The temperature

- in the Critical Assembly Building is maintained constant by use of a heat

pump. The Critical Assembly Building and the Fuel Assembly Building

are located within a fenced exclusion area, while the Control Building,

which also houses office space, is outside the fenced area and is shielded

from the Critical Building by an earthen embankment.

Z.Z GENERAL DESCRIPTION OF THE CRITICAL ASSEMBLY

Z.2. 1 STRUCTURE

The Critical Assembly consists of a reactor, water dump tank,

associated p'_umbing, safety and control rods, control and research in-

strumentation, and control circuitry. Some of this equipment is shown

in Figs. h.3 and 2.4.

Fig. Z. 5 shows design details of _he reactor tank assembly. The

basic structure element of the critical assembly is the reactor tank base

pla_e, which is a l-l/4-in, thick aluminum plate seven feet in diameter

mounted on four braced support legs. The 10-in. diameter water dump

line, the two overflow lines, and the reactor tank recirculation line con-

nections are welded to the bottom of this plate.

2-1
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Fi 8. 2.4--Top view of the reactor tank
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Fig. Z.5--Reactor tank assembly
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The cylindrical reactor shroud is bolted to the base plate to form

a reactor tank 78-in. in diameter and 82-in. deep. Six standoffs on the

base plate are used to mount the aluminum core support plate, which is

3/4-in. thick and five feet in diameter. The top surface is machined to

provide a flat surface, to a tolerance of 0. 010-in., upon which the fuel

elements and poison tubes rest. This is the basic reference plane J[or

the core components.

Fuel element and poison tube positioning is accomplished by using

two aluminum grid plates. Figure 2.6 shows the general grid plate lay-

out and the identification system in which upper case letters refer to fuel

element positions and lower case letters to poison tube positions. There

are 17:7fuel element positions and 216 poison tube positions.

The grid plates were made of 1-in. thick stress-relieved alumi-

num plates (6061T651) five feet in diameter. The plates were precision

bored on a horizontal boring miJl controUed by a programmed magnetic

tape. Table 2. l gives the hole size tolerances on the grid plates.

Table 2. 1

GRID PLATE TOLERANCES

Fuei Element Poison Tube

5__._ + o. 003 o: 57z + o. 003g:
- O. 000 - O. 000

Hole positions were held to within a O. OOZ-in. radius of true position.

In assembling the grid plate structure, the core support plate

was leveled to within .OlO-in. The lower grid plate was mounted to the

core support place by use of six Z-in. diameter stainless steel standoffs.

The upper grid plate was then mounted on six stainless steel stanchions

and positioned axially and azimuthally directly over the lower grid plate
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Fig. _-.6--Grid plate layout
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by use of optical equipment. The standoffs and the stanchions were heat

treated for high strength and were machined to a length tolerance of

+ 0. 002 inch. A view of the grid plates is provided in Fig. Z. 7.

The core thus consists of an array of fuel elements and peison

tubes held vertically at the proper spacing by the grid plates with all

removable elements resting on the c-re support plates.

2.2. Z WATER SYSTEM

The critical assembly water system (Fig. 2.8) has the capability

of pumping, heating, chilling, filtering, and demineralizing the water in

either the dump tank or the reactor tank. A centrifugal pump rated at

approximately 150 gallons pe: minute circulates water in one of several

modes. The modes are; (I) Dump Tank Recirculation Mode, in which

water is circulated from the dump tank through the heater-chiller and

demineralizer system and back to the dump tank, (Z) Reactor Tank Re-

circulation Mode, in which water is pumped from the reactor tank through

the heater-chiller and demineralizer system and back into the reactor

tank and, (3) Fill Mode, in which water is pumped from the dump tank

into the reactor tank at either the 150 gpm rate or at a reduced rate of

approximately I0 gpm. The various modes of operation are controlled

by spring-loaded pneumatically-operated bal) valves which are actuated

electrically from the interlock system. The system was designed for

fail-safe operation in the event of loss of power.

The height of the water in the reactor tank was recorded with a

servo-manometer which is a water manometer with a servo-fol_ower

directly coupled to a Veeder-Root counter. The Veeder-Root counter

reads out to 0. 001-in. The manometer is capable of reproducing to an

accuracy of± 0. 001 inch.
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Fig. Z. 7--Grid pia_e installa[ion



Z-11

1966016284-033



2-12

The water heater is a 100 kVA circulation heater fabricated from

stainless steel. It is capable of heating 1800 gallons of water at a rate

of approximately 10°C per hour. As the temperature of *.he water approaches

the desired operating temperature about two-thirds of the heating elements

are cut out from the circuit and the remaining third are operated from a

saturable reactor type proportional control system. This system main-

tains the water temperature constant to within _: 0. 10°C over a range from

room temperature to 80°C.

Z. _. 3 CONTROL CONSOLE

The Critical Assembly is remotely operated from the control con-

sole shown in Fi_:. Z. 9. This control system displays the uucl.ear instru-

mentation readings, the control rod positior.s, water height and fill rates,

and the condition of the interlock logic.

_.. Z. 4 CONTROL RODS

There are eight ve,'tically-acting control rods, of which six are

scrammable, gravity-fall safety rods. The shape of the blade (Fig. Z. 10)

permits its insertion in the tricuspid space formed hy three adjacent libel

elements. The rods are guided by a stai_less-.qteel rod tensioned between

the core support plate and the overhead steel framewe_k.

The upper end of the safety rod is fitted with a piston and magnet

armature (Fig. 2. 11). The piston arrests the fall of the rod at the end

of the cylinder. The safety rods are withdrawn and held cocked by tneans

of cylindrical electromagnets riding with ball bushings o_ the tensioned

guide rod. Each electromagnet is raised and lowered by a two-phase,

positive reversing motor and teleflex drive unit illustrated in Fig. Z. J 1.

"Teleflex '1 is the trade name used for a commercially produced stainless

st_l cable that is helically wound such that it can be driven with a pre-

cision machined drive gear. The system thus acts as a flexible rack and

pinion.

t
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Fig. Z. ll--Safety rod assembly
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The instant starting and positive reversing motors used to drive

the safety rods are 100-pole synchronous type with the speed determined

by the line frequency (60 cycles). This ensures that the motors will not

operate beyond their inherent speed of 7Z RPM. The speed is reduced

from 7Z to 6 RPM using a IZ to l gear reducer. The gear reducer is

coupled to the teleflex drive unit which gives a rod withdrawal rate of

approximately 0.8-in. per second.

g. Z. 5 REGULATINC _{ODS

Two of the eight control rods are used as regulating rods (Fig.

Z. It). They have synchro-motor transmitters connected directly to the

rod drive units. These transmitters are connected to synchro-motor re-

ceivers in the control room and drive Veeder Root counters which moni-

tor the regulating rod position. These rods are a/so provided with rod-

f/111-inancLrod-full-out limit switches. The regulating rod drive motors

can be operated from a dc stepping circuit to be "stepped" from pole to

pole. By using the stepping switch, the regulating rods can be raised or

lowered in increments of 0. 013-in. per step.

Z. Z. 6 INSTRUMENTATION

The nuclear instrumentation (Fig. Z. 13) consists of two log N-

Period ion chamber channels, two linear photomultiplier channels, one

linear ion chamber channel, two BF 3 proportional count rate ,r,eter

channels, and three fission counter channels. The three fission counters

are connected to linear pulse amplifiers and the discriminated outputs of

these amplifiers are counted with three automatically programmed scalers

and printers. These channels were used for core multiplication and period

measurements.

The remaining nuclear instrumentation channels were used as safety

circuits. The output signals from each channel (7-1evel and Z-period)were

1966016284-038



Z-17

TELEFLEX CCNOUIT,

TELEFLEX CABLE __

- TENSION ROD

c)

PPOflT PLATE

i BALL BUSHING

t TRANSMITTER ; _-"

SLO-SYN

GEARMOTOR _ 4------ HOUSING

LIMIT STOP
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used to drive a fast solid state comparator (Fig. Z. 14). The comparator

circuitry was designed and built at General Atomic and proved to be highly

reliable with respect to speed, s_ability, sensitivity, and ease of adjust-

ment. A scram signal on any one of the channels (Fig. 2. 15) drops the

safety rods and opens the dump valve. Special provisions for by-passing

channels and for other safety features are discussed in the Hazards Re-

port (I) and the Technical Specifications for the facility.
(z)

Z. 2.7 NEUTRON SOURCE

A polonium-beryllium source is used for stactup. Its position is

logically interlocked with the enabling power for :' control rods so that

no rod withdrawal or water fillmay be initiatedunless thc sovrce is in

the reactor assembly. After achieving criticalitythe sourc_ .swiLhdr2wn

from the core by a synchronous motor-teleflex drive system and stored

in a stainless steel drum filledwith borated water.

Z. Z. 8 POISON TUBES

The core excess reactivity was adjusted to the desired level with

cadmium nitrate solution contained in nickel-plated aluminum tubes. The

tubes were sealed at the ends with a double seal. One seal was a standard

O-ring and the other a tight mechanical seal formed by magnetically swag-

ing the tube over the end plug. Fig. Z. 16 shows the poison tube dimensions.

The primary purpose of the nickel plating was to prevent the formation of

aluminum hydroxide which cou/d cause some of the cadmium nitrate to

precipitate. Filling of all of the poison tubes to the same level was accom-

plished by first filling to slightly beyond the desired level and then drawing

off the excess.

Various concentrations of caclmium nitrate were used during the

experimental program ranging from 0.0 to 0.5 mole/liter. Table Z. 2 is

a summary of the concentrations used.

_,, ,4
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Fig° 2. 16--Poisontube
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Table 2.Z

POISON CONCENTRATIONS AND CODINGS

Color Code (Moles Cd/liter) Remarks

A Red 0. 09557

B Green 0. 1108

C Blue 0. 1255 r_ "e I Final Concen-

D Black 0. 1677

E Yellow 0.2899

F * 0. 0312

G * 0. 0623

H Orange 0. 04309 Core II Final Concen-
tration

--- • O. Z500

--- • 0.5000

--- Black Dand 0. 0000 Water Tubes

J White 0.2120

K Copper O. Z20Z Core IIIFinal Concen-
tration

L Gray O.4045 _

•Marked on individu_l poison tubes

$
t
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A precise knowledge of the concentration of the cadmium nitrate

solution is important, and preparation and analysis ,of the solutions •

were done with great ca.e. Each solution was prepared by appropriate

dilution of a prescribed quantity of 1.00 molar cadmium nitrate stock

solution. After preparing the required amount of solution in a 50-liter

polyethylene container, samples were drawn off and analyzed using the

following two methods: (1) electrodeposition as cadmium metal and (2)

gravimetrically as cadmium sulfate.

The electrodeposition method is based on the electroplating of

the cadmium from a small known amount of the solution on a platinum

electrode of known weight. The amount of cadmium deposited is then

determined by reweighing the electrode. This method can determine the

concentration to within about ± 0. 1%.

Using the gravimetric procedure, 10 to 20 ml ofthe cadmium

nitrate solution was put in each of four porcelain crucibles that had pre-

viously been ignited and weighed. Concentrated sulfuric acid was added

to each crucible and the solutions were evaporated to dryness. The

samples were then ignited at 700-800°C for several hours, cooled, and

weighed. This method is capable of determining the cadmium concentra-

tion to about _= 0. 1%. If the results of the two techniques did not agree to

within 0. g%, the entire procedure was repeated.

2.2.9 FUEL ELEMENTS

The fuel element assembly and subassembly are shown in Figs.

2. 17 and 2. 18. The subassembly consists of 24 stages each containing
>

five concentric rings of uranium-aluminum alloy and one ring of depleted

uranium. These rings _.relined with natural tungsten and are positioned

on thin-wall aluminum tubing. The fuel rings contain approximately (

35 wt _o metallic uranium, which is 93. 15_/oenriched. The rings are

%

|
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Fig. Z. 17--Fuel element
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0.04Z-in. thick and I-5/8-in. high. The stages are separated axially by

I/8-in. corrugated aluminum spacer rings. These spacer rings also

position the fuel radially.

A total of 15,000 fuel rings were fabricated at General Atomic by

shearing an existing supply of uranium alumlnum alley fuel foils into

proper lengths and then forming them into right circular cy];nders with

a precision die in a crank press (Figs. Z. 19 and 2.20).

Each fuel ring is lined on the inside with 0. 005-in. of natural

tungsten. The outermost ring of the subassembly is 0. 040-in. thick de-

pleted uranium and is lined on the inside with an 0. 003-in. ring of natural

tung sten.

A zirconium divider and a stud between the IZth and 13th stages

are required for safety. They prevent the accumulation at the bottom of

the core of melted fuel from the upper stages in the event of the IViaximum

Credible Accident.

Since the fuel and tungsten rings were not of uniform thickness

they were weighed and grouped by weights. The fuel elements were assem-

bled by sel_cting components from the weight groups in an order that tended

to preserve the average value in a given fuel element. Figure Z. 21 shows

the weight distributions among elements. All of the tungsten is within 4-l_o

of the average element and approximately 95_0 of the U z35 is within 4-l_0

of the average element weight.

The depleted uranium rings have an i.d. of 2. 137 4-0. 005-in. and

a wall thickness of 0. 040-in. They contain 0.22. 4-0.02. wt _0of U 2.35 and

are plated with 0. 0003-in. of nickel to prevent oxidation. Each ring has

an average weight of 137.Z6 grams, comprised of 135.98 grams of U 238,

0.30 grams of U 235 and 0.98 grams of nickel.

A 121-element core contains 95.82 kg. of U 235 and 191.31 kg. of

tungsten.

i
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Fi E . 2. 19--Fuel £ormir_ press
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Fig. 2.20--Fuel forming tie
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Table 2.3 shows the average weights a._ddimensions of the fuel

rings.

Table Z. 3

FUEL RING SPECIFICATIONS

Wall Average Average Average Average
i.d. Thickness U-At Wt UZ35 Wt UZ38 Wt t%1 Wt

Ring (in.) (in.) (_) (g) (_) (_)

A 0.785 0.042 11.347 3.727 0.274 7.346

B I.097 0.04Z 15.476 5.084 0.374 10.018

C" I.409 0. 042 19.931 6.547 0.481 12.903

D I.7ZI 0. 042 24. 408 8. 018 0.590 15. 800

E Z. 033 0.04Z Z8. 400 9.3Z9 0. 686 18.385

Table 2.4 shows the average weights and dimensions of the tung-

sten rings.

Table 2 4

TUNGSTEN RING SPECIFICATIONS

i.d. Wall Thickness Average Wt

Liner fon Ring (in.) (in.) _ (g)

A 0.775 0.005 6. 033

B I.087 0.005 8.459

C I.399 O. 005 I0.86Z

D I.711 0.005 13.977

E Z.0Z3 0.005 16.665

U z38 Z. 131 0.003 9. 878
&

Q
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Table 2.5 shows the weights of the remaining fuel element com-

ponents.

Table 2.5

ADDITIONAL FUEL ELEMENT COMPONENTS

ALUMINUM

Grams Units Per Total Grams

Component Per Unit Subassembly Per Subasselnbly

Center Post 228 + Z Z 456 • 4

Radial Spacer Tub:: A I01 ± 1 Z 202 _=Z

Radial Spacer Tube B 137 + 1 Z 274 + g

Radial Spacer T abe C 167 + 1 Z 334 + Z

Radial Spacer Tube D 194 + 2 Z 388 ± 4

Corrugated Spacer Ring A 24 5 :h 1

Corrugated Spacer Ring B 24 7 ± 1

Corrugated Spacer Ring C 24 9 ± 1

Corrugated Spacer Ring D 24 II ± 1

Corrugated Spacer Rir_ E 24 13 ± 1

Subassembly Lower Screw 15 + I I 15 ± 1

Subassembly Upper Screw ZZ± 1 1 7Z± 1

Subassembly End Plate 43 ± 1 Z 86 ± Z

I.,8Z2 ± 23 Grams

ZIRCONIUM

Grams Units Per Total Gram __

Component Per Unit Subassembl[ Per Subassembly

Center Plate 58 ± .4 1 58 ± .4

Stud Z2± .Z 1 Z3± .Z

End Plate 61 ± .5 1 61 ± ,5

14Z ± I.I
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The pressure tubes were made from 6061-T3 and have an average

o.d. of 2.562-in. and awall thickness of 0. 065-in. They were hard ano-

dized to prevent galling during insertion of the tubes in the grid plates.

The lower end cap was sealed to the pressure tube by a combination

O-ring and mechanical seal, the latter being accomp]ished on a General

Atomic "Magneforrn" magnetic forming machine.

The upper end of each pressure tube was sealed using "turn-rite"

adjustable seals that were modified for this purpose.

2.3 CL 'PAI_ISON OF CORE CONFIGURATIONS

Three separate and distinct core configurations were used through-

out the experimental program. They have been sequentially numbered, in

the order in which they were built, as Core I, Core II, and Core IIIfor

ease of reference throughout the remainder of this report. Each of the

three cores used the identical reactor structure, control rods, and fuel

element subassemblies. They differed only in the reflect,Jr configurations

and grid pl;_telattice 2acings (pitch).

2.3. 1 CORE I

The first core built used a 3. 00-in. triangular pitch between fuel

elem._nts. The side reflectors were full density water (neutronically

infinite in extent). The top and bottom reflectors were 6. 0-in. thick and

were composed of water in the same volurne fraction as in the core, since

both the pressure and poison tubes extended above and below the fueled

region of the core. The aluminum axial spacer tubes shown in Fig. 2,.17

were considered to be part of the end reflectors. Figure 2.5 shows the

positioni'_g of the core within the reactor tank. Water levels were deter-

mined by measuring up six inches from the top of the fuel rings in Stage Z4.

The servo-manometer readings were checked and the overflow levels set

in this way before loading fuel into the assembly.
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The Core I colffigurationhad 121 fuel elements. The six "corner"

locations A-l, A-7, G-13, N-7, N-I and G-I were empty to make the core

a better approximation of a right circular cylinder. The final cadmium

nitrate concentration used in Core I was 0. 1255 moles/liter (type C). A

maximum of 207 poison tubes could be ,tsed, because nine poison tulro

locations w_:re taken up by the eight control rods and one source tube.

The actual number of poison tubes in the core at any one time was varied

in order to shim the excess reactivity of the core to desired values ;_-

experimental purposes. Locations b-l, a-2, a-12, b-13, g-23, g-24,

m-14, n-ll, n-l, m-2, g-2, and g-1 were used for this purpose,

2. 3.2. CORE II

The only difference between Core I and Core II was the lattice

pitch and the cadmium concentration. Core II had a 2. 90-in. pitch and

a final cadmium concentratiol. _f 0. 0431 moles/liter (type H).

2.3. _ CORE III

The third core built used the original 3.00-in. pitch grid plates.

_iowever, the side and bottom reflectors were made prirnaril7 from

beryllium metal and the top reflector was water (with voids) 2.0-in.

thick. In addition, t_.esubassembly axial spacers were removed from

th_ fuel elements so that the subassembly rested on the bottom of the

pressure tube. Water levels were determined by measuring up two inches

from the top of the fuel rings in Stage 24. T_le servo-manom=_='r readings

, were checked and the overflow levels set in this way befcre lo_ding fuel

into the assembly.

Figures 2.22 and 2.23 show the mounting of the side beryllium re-

flectors. The scalloped aluminum faceplates on the beryllium boxes were

designed so that the amount of water around the edge cells would be the

same as the remaining core cells. Polyethylene was used to give a bettez
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simulation of the reference design which has cooling water in the reflector.

Borai sheets approximated a vacuum boundary for thermal m'utrons which

exists in the reference design. Grid plate locations A-l, A-,', G-13, N-7,

N-I, an,_ G-I were filled with voided pressure tubes for the s_me reason.

The bottom beryllium reflector (Fig. 2.24) is contained in a leak-

proof aluminum container that fits between the core support plate and the

bottom grid plate.

Specifications for the composition of the side and botto,n reflectors

are shown in Tables 2.6 and 2. 7.

Table 2.6

SIDE REFLECTOR MATERIAL SPECIFICATIONS

Mate rial Thicknc ss Density
3

Be Metal Blocks 2-7/8 in. I. 846 gm/cm
3

Polyethylene Sheet 3/8 in. I. 0 gm/cln
3

Aluminum See Fig. 2.23 2. 7 gm/cm

A1 Clad Boral Sheet

3
A1 Clad 0. 041 in. each side 2. 7 gm/cm

Core, 35 wt _0 B4C

65 wt g0 A1 .168 in_ 2. 626 gin/era 3

Table 2. 7

BOTTC_M REFLECTOR MATERIAL SPECIFICATICNS

Mate rial Thickne ss Density
3

Be Metal Blocks 4.0 in. I. 846 gm/cm

Aluminum See Fig. Z. 24 2. 7 gm/cm 3
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Ill. EXPERIMENTAL METHODS AND RESULTS

3.1 CORE LOADING

The initial critical loading of all three cores was accomplished

using the inverse source multiplication technique. The i,_crease in source

mu]tiplication following each loading step was monitored on three fission

counter channels and one linear ion chamber channel. Before loading fuel,

Cores I and IIIwere loaded _Ith IZl empty pressure tubes and a complete

inventory of poison tubes. Core II was first loaded to a critical configura-

tion starting with the empty pressure tubes but without poison tubes. In

all cases fuel was loaded starting with the center elements and working out-

ward. Loading in this manner resulted i, inverse multiplication curves

which are concave upward, a desirable situation from the standpoint of

safety.

In all three cases criticality was achieved before the full comple-

ment of IZl fuel elements was loaded. This necessitated increasing the

cadmium concentration in the poison tubes. This was accomplished by

first increasing the concentration in five of the poison tubes and then mea,.

suring the reactivity decrease. If the change was close to the anticipated

value, the complete inventory of poison tubes was changed to the new con-

centration which made the core subcritical. Fuel element loadings based

on the source multiplication were then resumed until criticality was attained

with the IZl-fuel element pattern.

A "standard core" has been defined for comparison of results.

This core contains 121 fuel elements, Z04 poison tubes, no rod guides,

and no source tube. Poison locations a-Z, b-l, a-IZ, b-13, g-Z3, g-Z4,

3-I
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m-14, n-ll, n-l, m-Z, g-2 andg-1 (used to shim the core to the desired

exceqs reactivity) were defined to contain water filled tubes in the standard

core. Locations d-9, e-16, j-15, k-10, j-5, and e-6which contain the

safety rod guides, and location h-10 which contains the source tube were

defined to be filled with poison tubes in the standard core. Experimental

corrections were made in the following results to account for the missing

poison tubes at these loc..¢ions. This was done by measuring the reac-

tivity difference between a stainless steel rod or tube and a poison tube

at equivalent locations. Experimental corrections have also been made

to account for the shim poison tubes and for fuel elements if less than 121

were loaded.

Table 3. 1 shows the corrected excess reactivities for the three

standard cores that were investigated.

Table 3. 1

EXCESS REACTIVITY OF STANDARD CORE

Poi son Exc ess

Cor____e Tube T_rpe Reactivity { $)

I 3. 0-in. pitch water reflected C 0. I0

II Z. 9-in. pitch water reflected H 1. 11

III 3.0-in. pitch beryllium reflected K 0.34

The reactivity of a core containing 85 fuel elements on a 2.9-in.

pitch and no poison tubes was found to be $0.47. Applying estimated

corrections to account for the control rod guides and source tube the

symmetric loading of 85 fuel elements (no fuel elements in the outer

"ring" or in B2, B7, G2, GI2° M2, and M7) had an excess reactivity

of $0.80.

Q
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3. Z REACTIVITY MEASUREMENT TECHNIQUE

Reactivit_ measurements on the above cores were made using

three standard techniques, These are: (1) measurement of positive

periods, (Z) subc_'itical source multiplication measurements, and (3)

pulsed neutron source measurements.

The measurement of positive periods involved two separate tech-

niques. For relatively fast periods three fission counter channels using

signals from probes located just beyond the side reflectors, were auto-

matically programmed to count for 29 seconds, printout for I second,

and repeat. The ratio of successive counts obtained in this manner is a

constant for a given asymptotic period. An average of about five ratios

from each of the three counters was used to measure the period. The re-

activity was then derived from solutions of the inhour equation.

The second method for measuring positive periods was the drift

technique. This technique is useful only over the narrow range of reac-

tivities where the iz_creas, in neutron population with time is essentially

linear. Experimentally, these measurements were made using a compen.

sated ion chamber driving a micro-microarnmeter. The output signal

from the latter was used to drive a recorder through a bridge circuit

which contained a bucking voltage. After nulling the output signal the

positive deviation could be measured with a hundredfold amplification.

By drawing a straight line througl" the recorder trace the reactizity can

be computed directly using the relationship that, for long periods,

constant (3. 1)

. The accuracy of the reactivity measurements was affected by

several factors. These include the positioning accuracy of the calibrated

regulating rod; the accuracy of the regulating rod calibration curve; minor

variations in moderator water temperature between one measurement and

the next; and the accuracy of calculating the effective delayed neutron frac-

tion which is used in relating reactivity to positive period. An additional

0
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uncertainty peculiar to Core II1 was the thick _ess of the upper water re-

flector, which was not neutronically infinite. Since the upper reflector

was worth approximately $0. 10 per inch in Core III, very minor changes

in the reflector thickness were quite noticeable.

As a conservative estimate, individual measurements of reactivity

made on Gores I and II are believed accurate to within ± $0. 001 whi!e mea-

surements on Gore Ill are believed accurate to within ± $0.00Z.

The subcritical source multiplication technique was used to obtain

rough results when the experimental conditions necessitated that the core

be subcritical. The technique was to first generate a curve showing the

relation between the source multiplication and the amount that the reactor

was subcritical. Regulating rods and poisc:l tubes that had been previously

calibrated by the positive period technique were used to determine the

latter. The curves generated in this manner were used in measuring

safety rod worths and in calibrating the regulating rods over that part

of their range that exceeded the $0.50 core excess reactivity limit. This

method of measurement is subject to error because of geometry effects

and was used only when limited accuracy was required.

The third method of measuring reactivity is the technique of ob-

serving the prompt decay following the introduction of a short burst of

fast neutrons. This technique is discussed in Section 3.5.

3.2.. 1 REGULATING ROD WORTH

The regulating rods were calibrated in the following way. First,

the core excess reactivity was adjusted to a value just under the maximum

allowable value of $0.50 by removing several of the peripheral poison tubes.

With one regulating rod fullywithdrawn, the second regulating rod _as _d-

justed so that the core was a fraction of a cent supercritical. The drift

technique was used to determine the amount. The second rod was then

partially withdrawn and the period corresponding to a five to ten cent

>

|

J
Q
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reactivity insertion measured The first rod was then inserted to bring

the reactor back to a long enough period for a drift type measurement.

This procedure was repeated until enough data were obtained to draw an

accurate integral rod worth curve. Because of the maximum excess re-

activity limit of $0.50, the first few inches of the regulating rod calibra-

tion were obtained using the subcritical source multiplication technique.

Table 3. Z shows the total integral worth of regulating rod number Z in

each of the three cores.

Table 3.7.

REGULATING ROD WORTHS

Core Worth ($)

I 0.57-5

II O. 500
III O. 475

3.7.7. SAFETY ROD WORTH

Since the interlock system precludes the withdrawal of a safety

rod after the regulating rods have been withdrawn, the safety rod worths

were determined using the subcriticaI source multiplication technique.

This was accomplished using the calibrated regulating rods to adjust the

core multiplication to several known subcritical values; in this way curves

showing the inverse source multiplication vs dollars subcritical could be

drawn. The results obtained are shown in Table 3.3.

Table 3.3

SAFETY ROD WORTH

Single Rod

Cor.....__e Worth ($)

I 0.64
II 0.61
III 0.56

Q
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3. Z. 3 MEASUREMENT OF THE EXCEgS REACTIVITY HELD DOWN

BY CADMIUM SOLUTIONS

The grid plate contains Z16 locations for poison tubes, rod guides,

and the source. A total of ?.07 locations are available for cadmium poison

tubes, nine locations being taken up by the eight s_.ainless steel rod guides

and the stainless steel source tube.

These Z16 locations can be grouped into symmetric groups contain-

ing either six, twelve, or eighteen poison tubes at twenty distinct radii

from the center of the core. Thus it is possible to measure the worth of

representative gro_ps of poison tubes, weight them b), their occurrence,

and add the results. This procedure will be referred to as the reactivity

mapping technique.

Table 3.4 shows the groupings and occurrence of a typical pattern.

The poison tubes in each group were replaced with similar tubes contain-

ing pure water. The resultant reactivity change was then measured on

the calibrated regulating rods.

. Table 3.4

TYPICAL PATTERN USED IN DETERMINING

THE TOTAL EXCESS REACTIVITY

Group Poison Tubes Weight Factor

1 f-ll, f-7, j-18, k-l, h-ll 6

2 c-14, e-8, g-15, k-5, 1-16 12

3 j-14, k-6, c-3, f-Z, g-23 12

4 j-16, e-18, d-3, j-l, a-8 12

A similar procedure was followed for mapping the worth of poison

tubes having a higher cadmium concentration than the standard loading for

a given core.

Q
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Table 3.5 shows the results obtained by mapping the worth of the

standard poison tubes for each of the three primary cores. These results

indicate what the total excess reactivity of a standard core would be if

the cadmium nitrate solution in the poison tubes was replaced with pure

water.

Table 3.5

EXCESS REACTIVITY OF STANDARD CORES
WITHOUT CADMIUM IN POISON TUBES

Core Poison Tube Type Excess Reactivity ($)

I C + 14.39

II H + 6.61

III K + 20.55

Table 3.6 shows the results obtr'ned by mapping the poison tube

worths for higher cadmium concentrations in each of the three primary

cores. These results indicate what the excess reactivity would be for

a standard core using the higher cadmium concentration.

Table 3.6

EXCESS REACTIVITY OF STANDARD CORES

WITH INCREASED CADMIUM LOADINGS

Core Poison Tube Type Excess Reactivity ($)

I D - 3. Z4
E - 9.37

II C - 6.3Z

D - 9.09

Ill E - Z.89

. L - 7.01
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3. Z.4 POISON TUBE WORTHS AT DIFFERENT RADIAL LOCATIONS

The reactivity change associated with the replacement of a tube

filled with cadmium nitrate by a similar tube containing water was mea-

sured at various locations in Cores I and Ill. The change in position of

the calibrated regulating rods, with the reactor on a slight positive re-

activity drift, was used to determine the worth of the change. Table 3.7

presents the results obtained in tabular form and Fig. 3. I shows the re-

sults graphically.

Table 3.7

RADIAL WORTH OF POISON TUBES

Radius Worth of Type "C" Wor_ of Type "K"

Location (cm) in Core ! ($) in Core III ($)

f-12 4.40 - 0. 13Z - 0. 167

f-I I 8.80 - 0. I75 ---

e-12 II.64 - 0. 119 - 0. 154

e-ll 15.86 - 0. II0 ---

d-lZ 19. 18 - 0. 099 - 0. It9

d-ll Z3. Z8 - 0.083 ---

c-12 Z6.76 - 0.073 - 0. 105

c-ll 30.80 - 0.055 ---

b-12 34.36 - 0.041 - 0.071

b-I 1 38.35 - 0. 030 - 0. 064

a-lZ 41.97 - 0. 037 ---

3. Z. 5 WORTH OF POISON TUBES HAVING DIFFERENT CADMIUM

CONCENTRATIONS

The worth of the cadmium nitrate in a single poison tube as a

function of the concentration was measured in all three cores at loca-

tion f-IX.

a
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The results are shown in Table 3.8 and in Figs. 3.2 and 3.3.

Table 3.8

POISON TUBE WORTH VS CADMIUM CONCENTRATION

Cadmium

Concentration Worth, Core I Worth, Core II Worth, Core III

(moles/liter ) ($) ($) ($)

O. 0431 - O. 039 - O. 048 - O. 050

O. 06275 - O. 074

O. 0956 - O. I06 - O. 093 - O. 090

O. 1108 - O. lhl

O. 1255 - O. 132 - O. 116

O. 1677 - O. 161 - O. 143 - O. 143

O. 2202 ...... - O. 167

O, 250 - O. 201 - O. 185 ---

O. 290 ....... O. 189

0. 500 - 0. 275 - 0. 252 - 0. 250

3.2.6 WORTH OF INDIVIDUAL FUEL ELEMENT COMPONENTS

Fuel element component worths were determined by measuring

the change in core reactivity when the component under study was re-

moved from all 24 stages of the fuel element. Table 3.9 shows the re-

sults obtained in location G-7 for all three cores.

Table 3.9

FUEL ELEMENT COMPONENTS WORTH

(LOCATION G-7 )

Worth, Core I Worth, Core II Worth, Core III

Components ($) ($,! ($)

• Uranium-Aluminum + I.08 + 0. 16 (E-Ring only) + 0.96

+ O. 11 (D-Ring only)

TunGsten - 0.35 - 0.33 - 0.28
U TM Ring - 0. 11 - 0. 11 - 0. 10

}

!
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Table 3. 10 shows some additional results obtained in Core I.

Table 3. 10

ADDITIONAL FUEL ELEMENT COMPONENTS WORTHS,
CORE I

Location G-7 Location B-6 Location A-5

Material Worth ($) Worth ($) Worth ($)

Uranium Aluminum +

Aluminum 1.08Z 0. 366 0. 358

Tungsten - 0.352 - 0. 101 - 0. 071

U 238 Ring - 0. 113 - 0. 027 - 0. 019

Fuel Element vs Void

(Algebraic Sum) 0. 617 O, 238 0. 268

Fuel Element vs Void

(Measured Directly) 0. 619 0. 240 0. 270

3.2.7 NEUTRONIC SIMULATION EXPERIMENT

As a check on the validity of the neutronic simulation a five-stage

enriched tungsten fuel element section was fabricated at the Oak Ridge
D

National Laboratory and supplied to General Atomic by the National Aero-

nautics and Space Administration. Tables 3.11 and 3. 12 give the physical

specifications of this element.

Table 3. 11

SPECIFICATION FOR SIMULATION SECTION

Tungsten Isotope Percent in Rin_s 1-10 Percent in Ring 11

180 < 0.006 < 0.010

182 2.019 6.202

183 1.581 81.822

184 93.889 8.742

186 2.505 3.224
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The stages are each 1. :_J25-in. in height and are separated by

0. 125-in. aluminum spacers. The five-stage enriched tungsten fuel ele-

ment section was used to replace stages eight through twelve of the cen-

tral fuel element G-7 in Core III.

There were two goals in the simulation experiment. The first

goal was to compare the worth of the mockup fuel element section to that

of the enriched tungsten fuel element section with five rings and then with

eleven rings of tungsten in place. These two enriched tungsten fuel ele-

ment configurations bracketed the reference case; the five-ring configura-

tion contained reference amounts of W-182, W-183, and W-186, but was

deficient in W-184, and the eleven-ring case contained the reference

amountof W-184 but an excess of W-18Z, W-183, andW-186. The worth of

the mockup fuel element was found to be between the worth of the five-ring

and eleven-ring configurations, as required if the mockup design was

indeed a good representation of the reference fuel element.

The second goal of the experiment was to adjust the number of

tungsten rings so that there would be no reactivity difference between the

five enriched stages and five stages of the standard fuel element. This was

accomplished with tungsten rings 1, 4, 7, 10 and ll in place. However,

when checking the separate worth of the fuel used in the enriched stages

with the worth of the fuel in five of the stages fabricated at General Atomic,

a difference of approximately two cents was found. Furt,ker, the worth of

the fuel in both a.ssemblies was found to depend on the amount of tungsten

present in the five stages. To eliminate these differences new spacers

were fabricated that enabled the uranium-aluminum alloy mockup fuel to

_ be used in the five enriched tungst,.m stages. In this configuration a re-

activity match was achieved with enriched tungsten rings 1, 2, 4, 6, 7, 9,

10 and 11 present. The five enriched stages were actually $ 0. 0008 more

reactive; however, under the conditions of these measurements the results

are believed to be accurate only to ± $ 0.001.
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3.2. 8 WORTH OF THE UPPER END REFLECTOR IN CORE I

Measurements were made of the worth of the upper end reflector

in Core I. Figure 3.4 shows the measured integrated worth to approxi-

mately 12.0 in. The offset in the curve at 6 in. represents the 7/8-in.

thick aluminum grid plate. The total worth of an infinite upper reflector

is approximately $ 0. 75 from extrapolation of Fig. 3.4. Table 3. 13 is

a tabulation of the results shown in Fig. 3.4.

Table 3. 13

WORTH OF TOP REFLECTOR

Reflector Height InteGrated Worth

1. 015-in. $ 0. 182
1.945-1n. $ 0.310

4. 390-in. $ 0. 544

6. 035-in. $ 0.611

8. 035-in. $ 0. 657

10. 035-in $ 0.693

12.035-in. $ 0. 714

3.2.9 WORTH OF VARIOUS BORON CONCENTRATIONS IN CORE I

The reactivity worth, relative to water, of a single poison tube

containing various concentrations of boric acid was measured in location

f-12. The results are given in Table 3. 14 and graphed in Fig. 3.5.

Table 3. 14

ME,_ URED W ORTH OF VARIOUS

BORON CONCENTRATIONS

Boron Concentration Worth of One

(moles/liter) Tube in f-12 ($)

O. 2856 - O. 069

O. 4236 - O. 096

O. 5614 - O. 121

O. 6993 - O. 142

i
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3.2. I0 SUBSTITUTION OF BORON-STAINLESS STEEL FOR TUNGSTEN

IN TIIE CENTRAL FUEL ELEMENT OF CORE II

Boron stainless steel foils were substituted for tungsten foils in the

central fuel element (G-7) to provide experimental worth data that would

be virtually independent of resonance absorption. One nonover-lapping

wrap of the boron stainless steel foil was inserted in place of each of the

tungsten foil wraps inside the element. The thickness of the borated foil

was 0. 0025 in. Weights of the foils for the 24 stages of one element are

given in Table 3. 15.

Table 3. 15

WEIGHT OF BORON STAINLESS STEEL FOILS

Foil Position Weight of 24 foils (g)

Liner, Ring A 24 77

Liner, Ring B 34 00

Liner, Ring C 44 99

Liner, Ring D 54 52

Liner, Ring E 64 81

Liner, Ring F 68 08

The reactivity worth of the boron stainless steel foil was - $0. 257

when compared to a fuel element containing neither tungsten nor boron

stainless steel foil. The worth of the tungsten wrap under the same con-

ditions was • $0. 331.

A chemical analysis of the major additives to the steel was made

in duplicate for each of two samples. Table 3. 16 lists the results. The

duplicate analyses for boron are both listed to provide an indication of the

precision of the results.

Table 3. 16

CHEMICAL ANALYSIS OF BORON STAINLESS STEEL _

Sample _0B _oNi _0C r _/oMn :

1 (1.43, 1.44) lO.Z 15.3 1.65

2 (i.44, 1.42) 10.4 14.7 1.65
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3.3 FOIL MEASUREMENTS

3.3. 1 GENERAL METHODS

A sodium-iodide (thallium-activated) well-crystal coupled to a

photomultiplier tube and shielded by lead bricks was set up in the control

building to count activated specimens. Automatic counting equipment

allowed repetitive sample counting on an accurately controlled time basis.

Thus, whenever it was necessary to follow the time decay of irradiated

foils, a sequence of counting time followed by a sample-changing time

could be cycled without difficulty.

Most specimens counted were enclosed in Z-dram polyethylene

vials for handling. Such vials readily fitted the well of the I-3/4-in. by

2-in. crystal and permitted rapid handling along with high counting sen-

sitivity.

Conventional foil materials were used in most measurements.

Copper, manganese, and gold foils were irradiated to obtain relative

flux distributions either in the cell or throughout the core. Uranium-

aluminum foils were also used to make direct relative power distribu-

tion measurements.

An extensive mapping of the Core III relative power distribution

was requiredfor use in conjunction with the gamma heating experiments

discussed in Section 3.6. This was accomplished by counting the rela-

tive gamma activity of the fuel rings in an extensive region of the core.

The gamma radiation from each fuel ring was counted above 400 keV

gamma energy while being rotated about its axis. A small IZ0 rpm

electric motor equipped witb t series of aluminum mandrels was located

, above a scintillation crystal for this purpose. By this means it was possi-

ble to average the variations in fuel density and also the azimuthal varia-

tions of fission product activity in fuel rings near the core-reflector in-

terface.

u_ •
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Absolute power calibrations of Core IIIwere accomplished using

both gold and manganese alloy foils. One-fourth in. diameter discs of

0.00g-in. gold and 0.005-in. manganese alloy (80_wt%Mn - 20wt% Cu)

were activated in the TRIGA reactor and counted, as foils, on a 3-in. by

3-in. scintillation crystal. The foils were then dissolved and a known

portion of the solutions evaporated on a thin film for 4_ beta counting to

determine the absolute disintegration rate. This technique absolutely

calibrated the scintillation crystal for gamma counting in the exact geo-

metry that was used for foils activated in the critical assembly. 4_ beta

counting of foils activated in the critical assembly is unsatisfactory be-

cause of their low specific activity. Gold and manganese are well suited

to this method, as the decay schemes are simple and well known; the iso-

topes occur in I00% abundance; and the half-lives are convenient. Copper

was tried but it is not as suitable, since the branching ratio of the beta

decay of Cu 64 is not too well known and because of positron emission

which causes difficulty in determining the absolute beta counting rate.

Corrections for irradiation time, decay time, and counting time

were then applied to the experimentally determined disintegration rate to

find the saturated activity of the foil in disintegrations/minute/gram of

material. The difference in bare and cadmium-covered activities, or the

subcadmium activation, was then related to power through calculational

techniques and a knowledge of the activation cross section of the foil

mate r lal.

3.3. g RADIAL POWER DENSITY IN ELEMENT G-7

Circular foils of t/4-in, diameter were punched from the uranium-

aluminum fuel rings of Stage IZ of fuel element G-7. Before irradiating

these foils, their gamma spectra were displayed on a multi-channel analy-

zer and examined for evidence of f'ssion product activity from any pre-

vious use. No significant high-energy background was noted.
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The relative amount of U Z35 in each foilwas measured by count-

ing the 165-185 kcV gamma rays which accompany the natural decay of

the U Z35. The foilswere irradiated in place in all three cores. The

fission product activity of the foilswas measured by integral counting

above a gamma ::ayenergy of 600 keV, using the activity of one foil,

repetitively counted, to obtain a decay correction curve. Two foilswere

exposed at positions 180° apart in each fuel ring. Table 3. 17 shows the

average of the two measurements, normalized to I.000 at the E-ring,

for each core studied.

Table 3. 17

RELATIVE POWER DENSITY - STAGE 12 OF ELEMENT G-7

Average Power Density

Ring Radius (Cm) Core I Core II Core III

E Z.634 I.000 I.000 l'..000

D Z.Z38 0.824 0.797 0.81Z

C I.84Z 0.7Z3 0.705 0.703

. B I.445 0. 670 0. 658 0.654

A I.049 0. 653 0. 621 0.6ZZ

3.3.3 AZIMUTHAL FLUX AND POWER DISTRIBUTION IN ONE FUEL
ELEMENT

Azimuthal mapping of the thermal flux around fuel elements G-7

and A-4 was accomplished in Core I using strips of manganese-copper

alloy foils. Three-eighth in. wide strips of 0. 005-in. foilwere taped to

the outside of the U R38 ring on the 14th fuel stage. Following irradiation,

the strips were cut into squares and the integral manganese activity was

gamma-counted above I.60 MeV. Background subtraction (nearly negli-

- gible at this bias) and weight corrections were made. The results are

shown in the azimuthal flux map of Fig. 3.6. It is apparent that the

!
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Fig. 3.6--Azimuthal activation of manganese foils, Core I
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thermal flux is closely symmetrical about the center element G-7, and

that scalloping of the flux is not present. The mapping of element A-4

shows the thermal flux peaking at the core-reflector interface (the 180 °

position).

A check was made of the azimuthal power distribution in the cen-

tral element G-7 of Core III. Five adjacent foils were punched from a

60 ° sector of Stage 11 and were irradiated during an axial power mapping

run (the central one of these foils simultaneously served in the axial

power mapping). Results of this mapping are exhibited in Fig. 3.7,

where it can be seen that no azimuthal power asymmetry exists.

3.3.3.1 Measurement of the Worth and Effect of Water at the Core-
Reflector Interface

To determine the worth of water at the core-reflector interface

and its effect on local flux and power distributions, the core-reflector

interface water gap was reduced from 0. Z88 in. to 0. 163 in. on one of

the six side reflectors.

Reactivity measurements made before and after the five aluminum

' inserts were installed showed that a reduction in water gap of 0. lZ5 in.

at the interface resulted in a reactivity loss of $0. 031.

Manganese foils were placed around the U 238 ring on Stage 12 of

fuel element A-4. The relative activities obtained are shown in Fig. 3.8.

3.3.4 INTERSTITIAL FLUX MEASUREMENTS

The thermal flux variation in the trifluted area between adjacent

fuel elements was mapped in Core I using the following technique. A

plexiglass holder was fabricated to hold copper wire segments, vertically

oriented, in the interstitial spaces between adjacent fuel elements and be-

tween a fuel element and a cadmium poison tube. Twenty-one 1/4-in.

segments of wire, 0.0Z5-in. in diameter, were exposed for 30 minutes at

a power of 10 watts. Following irradiation, the copper activities were

l
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Fig. 3.7--Azimuthal relative power in fuel .-lement G-7 (Core III)
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analyzed using a 3-in. diameter well-crystal system to display the

gamma-ray spectrum on a Z56-channel analyzer. Results are shown in

Fig. 3.9.

3.3.5 FLUX AND POWER DISTRIBUTIONS THROUGHOUT CORE

An axial flux map was made in Core I using copper and manganese

foils. These foils were taped to the outside of the U 238 ring in element

G-7 and to the aluminum top and bottom spacer tubes. They were irrad-

iated for approximately Z0 minutes at ten watts. The gamma radiation

from the decay of the 2.58 hour half-life Mn-56 and that of the It. 9 hour

Cu-64 were counted in the scintillation well-crystal counter. The man-

ganese activation was sufficient to enable counting of the i. 80-MeV and

Z. IZ-MeV photopeaks. The copper foils were counted above a bias of

400 keV to detect the .510-MeV annihilation radiation.

The foils used were weighed and the usual corrections were made

for weight deviations, counter background, and decay. Results of the

axial mapping are shown in Fig. 3. I0.

A radial power map for Core I was made at the Stage IZ level of

the reactor core using circular foils punched from the "E" rings of the

uranium-aluminum fuel alloy and gamma-counting the fission product

activity.

Results of the radial power mapping along the "G" element row

are shown in Fig. 3. II. The variation in power among individual fuel

rings is clearly shown in those elements where all five rings of the ele-

ments were punched and counted. Furthermore, the thermal flux return

from the reflector shows up in the power spike at the outer edge of the

core.

Mapping of the radial traverse at 90 ° to the "G" element row

(through elements G-7, E-6, C-5, and A-4) is shown in Fig. 3. IZ. Here
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the skewing of the power distribution through the element at the core-

reflector interface (which is more clearly defined at element A-4 than at

element G-12), is quite noticeable.

An axial power map for Core III was made in element G-7 with

U-AL foils from fuel ring E of each stage. At each stage height, two

foils which were 180 degrees apart were activated. The average activa-

tion of the two foils at each stage is plotted in Fig. 3.13, where the in-

fluence of the bottom beryllium reflector can clearly be seen.

Radial power traverses for Core III were made in the four fuel

elements G-7, E-6, C-5 andA-4. Stages 3, 6, II, 16, and Zl were

chosen for mapping and foils from the "E" rings of each element at these

axial stage heights were counted. Additional mappings through the inner

rings of elements G-7 and A-4 were made in Stages 3 and 11. Results of

the radial power mapping are displayed in Figs. 3.14 through 3. 16, where

the relative activation is shown.

3.3.6 CADMIUM RATIO MEASUREMENTS

The cadmium ratio of several common foil materials was mea-

sured in all three cores. The foils were 1/4-in. diameter and were

covered with 3/8-in. diameter cadmium covers, 0. 022 in. thick. The

foils, both bare and covered, were taped to the outside of the U z38 ring

on tia_ twelfth fuel element stage. Table 3.18 gives the results.

Table 3.18

CADMIUM RATIO MEASUREMENTS

Core Fuel Element Material Thickness (in.) Cadmium Ratio

I G-7 Au 0. 002 1.51

I G-7 Mn 0. 005 (80 wt % Mn) 3. 12
I A-4 a Au 0. 002 2.54

I A-4 a Mn 0. 005 (80 wt _/oMn) 7.16
II G-7 Au 0. 002 1.45

III G-7 Au 0. 002 1.48

III G-7 Mn 0. 005 (80 wt To Mn) Z. 52
III G-7 Gu 0. 005 4.32

aAt core-reflector interface
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3.3.? RELATIVE POWER CALIBRATION, CORE III

3.3.7.1 Radial

The irradiated fuel rings from the twelfth stages of the elements

within the triangle G-l, G-7, and K-1 were gamma counted while rotating

on a mandrel as previously described. One fuel ring {the A-ring of

element G-7) was chosen for use as a standard to be repetitively counted.

The decay curve generated was then used to normalize all counts to the

same counting time. Normalization of the U 235 content of the fuel rings

was accomplished by weighing the rings. A constant weight percent of

U z35 was assumed.

Following the reduction of the counting data, all rings of a given

diameter were normalized to the corresponding ring in element G-7,

which was arbitrarily set equal to 1. 000. Results are shown in Table

3.19.

Table 3.19

RELATIVE RADIAL POWER DISTRIBUTION DATA

Sta_e-lZ Fuel Rin$
Fuel Element A B C D E

K-1 0. 740 0. 725 0. 717 0. 739 0.77Z

J-1 0.730 0. 691 0. 702 0. 713 0. 754
J-Z 0. 717 0. 695 0.727 0. 703 0. 713

J-3 0.808 0. 787 0. 781 0. 794 0. 818

H-1 0. 739 0.75Z 0.76Z 0.766 0. 796
H-Z 0. 688 0.665 0. 647 0.663 0. 687

H-3 0.794 0.770 0.755 0.771 0.804
H-4 0. 885 0. 887 0. 882 0.851 0. 904

H-5 0. 958 0. 938 0.971 0.933 0.949

G-2 0.719 0.685 0. 691 0. 697 0.734

G-3 0. 749 0.698 0. 718 0.715 0.762

G-4 0. 855 0. 820 0. 866 0. 848 0. 854
G-5 0. 936 0. 909 0. 963 0.938 0. 937

G-6 0. 984 0. 988 0. 980 0. 960 0. 999

G-7 1. 000 1. 000 1. 000 1. 000 1. 000
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Due to differences in counting geometry from one size fuel ring

to another, it is not possible to use the above data to relate the power in

the five sizes of fuel rings. In order to obtain this relation, the five fuel

rings from the 1Zth stage of fuel element G-7 were flattened and cut to

equal areas. They were then gamma counted in the same geometry. The

results thus obtained are proportional to the power density in each ring,

which is shown in the second column of Table 3. Z0. Multiplying the power

density by the average weight of U 235 per ring and renormalizing to 1. 000

for the E-ring, gives the relative power among fuel rings, as shown in the

fourth column of Table 3.20.

Table 3. Z0

RELATIVE POWER PER FUEL RING IN THE

IZth STAGE OF G-7

t

Power Avg. Wt. U z35 Relative

Ring Density Per Rin_ (_m) Power

A 0.672 3.7Z7 0.2685

B 0.704 5. 084 0.3836

G 0.756 6. 547 0.5305

D 0.835 8. 018 0.7176

E I.000 9.3Z9 I.000

The last column forms the basis for normalization of the entire

map of the lZth stage in the triangular sector of the core. Renormaliza-

tion of Table 3.19 gives the results shown in Table 3.21, where the fuel

rings of G-7 now have the proper relative power.

A useful number to be used in comparing the preceding results

with calculations is the peak-to-average value. This has been computed

by dividing the sum of Golumn 5 of Table 3.21 by the total number of

fuel elements (121 to obtain the average relative Stage 12 power-per-

fuel element. The peak-to-average value is then found to be 1. 264.
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A plot of the radial power distribution based on the results of

Table 3. Zl is shown in Fig. 3.17. A renormalization of the data, assign-

ing the value of 1. 634 to fuel element G-7, was made to facilitate com-

parison with calculations.

3.3.7.Z Axial

The "E" and "A" fuel rings from all Z4 stages of fuel elements

G-7, G-4 and K-1 were irradiated and then gamma counted using the ro-

tating mandrel procedure. The E-ring result_ are given in Table 3. ZZ.

They are normalized to the value 1. 634 at the lZth stage of fuel element

G-7 to facilitate comparison with calculation. The relative normaliza-

tion between the three fuel elements is based on the Stage lZ radial data

given in Table 3. Zl. Figure 3.18 is a plot of these data.

The curves of Fig. 3.18 are redrawn normalized to the local/

average fuel element power for each element in Fig. 3. 19. The simil-

arity of the three curves is an indication of the separability of the axial

and radial flux profiles.

The A-ring axial data had essentially the same relative shape as

the E-ring data.

3.3.7.3 Total Relative Power

If'the relative radial power distribution shown in Table 3. Zl is

combined with the axial distribution for fuel element G-4 (G-4 is taken

to represent the average axial shape for the core) and the resultant total

power normalized to 1.00, the power in Stage 1Z of fuel element G-7 will

be 1.59. This number may be compared with the calculated value of

I.645.
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Table 3.22

AXIAL POWER PROFILE

E- RING

Axial Position of Fuel Element

Sta6- No. Center of Rin6 (cm) G-7 G-___i_4 K-1

1 25.75 1 460 1 Z23 1.034

2 30.25 1 309 I 075 0.922

3 34.75 1 368 1 104 0.960

4 39.25 I 414 1 191 !.010

5 43.75 I 433 l 240 1.077

6 48.25 l 494 I 296 I. 121

7 52.75 l 575 l 332 1.159

8 57.25 I 639 I 368 I 174

9 61.75 l 646 l 387 l 218
I0 66.25 l 643 I 434 l 205

11 70.75 1 668 1 419 I 228
12 75.25 1 634 1 390 I 216

13 79.75 1 609 1 332 1 164

14 84.25 1 557 1 319 1 123

15 88.75 1 475 1 247 1 084

16 93.25 1 386 1 172 1 059

17 97.75 1 261 1 102 0.961

18 102.25 1 153 1 004 0.895

19 106.75 1 045 0.927 0.794

20 111.25 0.960 0.836 0.701

21 115.75 0.840 0.690 0.617
22 120.25 O. 705 O. 605 O. 515

23 124.75 O. 553 O. 469 O. 406

24 129.25 O. 448 O. 375 O. 312

3.3.8 ABSOLUTE POWER MEASUREMENTS

Bare and cadmium-covered gold and manganese-copper alloy

foils were exposed on the exterior of the U 238 ring at Stage 12 of fuel

element G-7 in Core HI. Following irradiation, they were counted in

manner previously described in Section 3.3.1.
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The conversion factors relating the absolute disintegration rates

to the fluxes and hence the core power were obtained by calculation as

discussed in Section 6.3.4.

Results of several measurements, all of which were made with

the core at a constant power for over one half-hour are shown in Table

3.23.

Table 3. Z3

ABSOLUTE POWER CALIBRATION

Foil Thickness Power (watt)

Material (in.) Run 1 Run Z Run 3

Au .002 8Z. 6 85. Z 84.7

Mn .002 80.7 ....

Mn . 005 -- 72.8 70.4

The manganese-copper alloy exhibits a wider spread than ex-

pected. This may be due in part to uncertainty in the chemical analysis

of the alloy or in part to nonhomogeneity of the alloy. Since the gold

was in pure form the average of the gold results is considered to be the

more reliable measurement. Thus an absolute power of 84. Z watts, the

average of the gold measurements, is recommended for use in the aria:y-

sis of the gamma heating experiments discussed in Section 3.6.

3.4 TEMPERATURE COEFFICIENT MEASUREMENTS

' 3.4. 1 METHOD

The change in reactivity associated with heating of the water in

all three cores was measured by the following procedure. First, since

a predominantly negative temperature coefficient was anticipated, the

core excess reactivity was adjusted to a value slightly in excess of $0.40.
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With the reactor just at delayed critical, the reactor tank water was cir-

culated through the heater loop and its temperature raised. The change

in reactivity with increasing wa_er temperature was compensated for by

movement of the regulating rods. After reaching the desired higher

temperature the heater was put under proportional control and the system

allowed to come to temperature equilibrium. The poison tube in position

g-14 contained water with no cadmium and three iron-constantan thermo-

couples. Fo-r thermocouples and one thermohmwere positioned as

shown in Table 3. Z4.

Table 3.24

LOCATION OF TEMPERATURE MEASURING SENSORS

Ther mocouple Radial Position Axial Pos itiou

1 g-14 Lower reflector in-
terface

2 g-14 Center of core

3 g-14 Upper reflector in-
terface

4 I0 in. beyond the reflector

interface at midcore height

(thermohm) I0 in. beyond the reflector

interface at midcore height

There were also several iron-constantan thermocouples in the beryllium

side reflector of Core III. Typically, a ten-degree centigrade increase

in water temperature could be made in about one hour with another half-

hour being required to attain sufficient equilibrium to enable a reliable

positive drift measurement to be made at a fixed regulating rod setting.

The water temperature measurements were generally uniform to within

+ 0.25°C after about 1/2 hour although a slightly longer time was required

in the beryllium-reflected core. The thermohm bridge measurement of

the absolute temperature is accurate to about _0 0Z°C. _
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In all cases the calibration of the regulating rods was checked at

the higher temperature and found to be essentially identical with the room

temperature calibration.

3.4. Z RESULTS

Figure 3.20 shows the relative change in core excess reactivity

requiting from the increase in water temperature.

In addition, in Core III a rough measurement was made to deter-

mine the size and magnitude of the beryllium reflector temperature co-

efficient. This was accomplished in the following manner. The water in

the dump tank was preheated to approximately 70°C. {The reflector and

core components were slightly above room temperature.) The hot water

was then pumped into the reactor tank. The temperature sensors at the

locations indicated in Table 3.24 were used to determine when the poison

tube temperature was the same as the bulk water temperature. This

occured quite rapidly. The beryllium reflector temperature increase

was much slower. The change in reactivity was measured as the re-

flector temperature increased from 47°C to 65°C. With water tempera-

ture held constant at 66.8°C the results shown in Fig. 3.21 were ob-

tained. There is considerable uncertainty in their interpretation because

of effects arising from the nonuniformity of the beryllium temperature

and possible changes in the fuel element subassembly temperature.

3.5 PULSED NEUTRON MEASUREMENTS

3.5. 1 METHOD

The technique of pulsing was identical in all three cores and util-

ized a Haman A-801 neutron generator. The generator controls were

mounted in the control room and the neutron generating head, which con-

sists of a pulse transformer and deuterium-tritium source tube_ was
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mounted in a water-tight container just outside d the side reflector re-

gion at about midcore height. The neutrons are generated in this type

of unit by applying a short high-current electrical pulse to the pulse trans-

former. This results in a high potential being developed between the deu-

terium source and the tritium bearing target. Deuterium ions are accel-

erated into the tritium-bearing target, producing 14-MeV neutrons. The

manufacturer's specifications claim that the generator can produce bursts

of up to 10 8 neutrons at a maximum pulse rate of !0 per second.

The detection and time analysis of the resultant neutron burst were

accomplished in the following manner. A small BF 3 probe was placed in

a voided poison tube in core location f-lZ. The output pulses from the

probe were integrated in a fast solid-state preamplifier attached to the

probe. These pulses were shaped and delay line clipped in a fast solid-

state amplifier in the control room. The amplified pulses were then fed

into a fast solid-state integral discriminator. The output from the latter,

which is a very short duration square wave, was used to drive the time

analyzer. The analyzer was gated on by a timing pulse from the pulse

generator control unit. Discriminator output pulses following the neu-

tron burst were coup,led in various time interval channels in the analyzer,

the minimum channel widt]a being 16 microseconds.

Data obtained in this way were reduced by first subtracting the

background, i.e., the essentially constant number of counts in each

channel following the prompt decay. During this time the delayed neu-

trons act as a source and the total neutron population depends on the core

multiplication. The data were then plotted on semilogarithmic graph

paper. By neglecting the first few channels where transient effects and

counting rate losses cause distortion, the prompt decay constant ¢Xwas

determined by fitting the data with a straight line and determining the

time required for the neutron population to fall off by a factor of e.
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To determine the ratio of _/_eff (the prompt mean lifetime divided

by the effective delayed neutron fraction) experimentally, all three of the

cores were pulsed at very near delayed critical, the amount subcritical

being determined from a calibrated control rod.

3.5. Z RESULTS

All of the following data have been reduced using the following ex-

pressions to relate reactivity and the _.xperimentally determined values

of 0_.

A_

pp =p - 1 = _eff_ (3. z)

A = t/kef f (3.3)

k-1
= (3.4)

P k_ef f

pp is the prompt reactivity in dollars, p is the delayed reactivity in

dollars. A is the mean generation time, and 6 is the prompt mean life-

time. Using the value of a measured for the just subcritical core, ex-

pressions (3.2) through f3.4) were solved for 6/Bef f. Since this ratio is

rather insensitive to changes in the cadmium concentrations, the value

obtained in the just subcritical core was used in relating the value of a

to reactivity for the cores with the same pitch and reflectors but with

increased cadmium loadings. An iterative procedure was followe" until

the value for the generation time A, as determined from expressions

(3. Z) through (3.4),converged.

Corrections have been applied to account for the absence of poison

tubes at the control rod, source tube, and detector locations; thus the

following results represent the standard core configuration of lZl fuel
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elements and Z04 poison tubes. The results shown in Table 3.25 are

analyzed in Section 6.5.

Table 3.25

RESULTS OF THE PULSED NEUTRON SOURCE MEASUREMENTS

Iterated "Standard Coret'

Pois on - Reactivity Reactivity

Cor.._.._e Tubes _ (sec "I ) 4"/_eff(sec) ($) ($)
-3

I C - 340.0 4.06 x I0 - 0.28

D - 940.0 - 2.88 - 2.91

E - 2280.0 - 8.80 - 9.01

-3
II H - 317.0 4. 12 x I0 ..0.305

G - 1578.0 - 5.79 - 5.73
-3

llI K - 306.0 4.51 x I0 - 0.38

E - 674.0 - 2.08 - 2.77

L - 1316.0 - 5.14 - 6.06

The 2.9-in. pitch core was initially loaded without cadmium poi-

son tubes to obtain data on an unpoisoned core. A pulsed neutron mea-

surement of a, the prompt neutron decay constant, was made on the

symmetric loading of 61 fuel elements. (This loading filled the center

location plus the next four "rings" shown in Fig. Z. 6. ) The value of a
-I

obtained for the 61-element array was 1701. sec .

The loading was conLinued until criticality was achieved with the

84th element. The symmetric loading of 85 fuel elements with no poison

tubes was found to have an excess reactivity of S t,. 47 without applying

corrections. This loading filled the inner five rings with the exception

of locations B2, BT, GZ, GI2, M2, and /,47. After obtaining several cal-

ibration points on the regulating rods, this core was pulsed while $0.14
-I

subcritical. A value of a = 285. sec was obtained. This gives a value

of &'/_eff = 4.00 x I0 "3 seconds.

4
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Type H poison tubes were added to the 85-element core at all

points interior to the loaded elements (128 poison tubes). The :ore was
-I

pulsed and found to have a value ofCX = - 150Z sec .

3.6 GAMMA HEATING EXPERIMENTS

3.6. 1 INTRODUCTION

The measurement of the gamma and neutron dose distribution i_

both the radial and axial dimensions of Core Ill were made using thimble

ionization chambers of two types: one sensitive mainly to energy deposi-

tion from gamma rays and the other sensitive " '-e energy deposition

from both gamma rays and fast neutrons. The a_solute gamma sensi-

tivity of the ionization chambers was determiued using an X-ray machine,

Co 60 radiation, and 7 MeV electron bremsstrahlung. The radiative en-

ergy deposition in the neutron dosimeters was determined by comparing

their response with that of a water calorimeter in the TRIGA Mark I re-

actor. A time history of the gamma intensity in the critical assembly

core was also made showirg the contribution of delayed gammas to the

total gamma radiation.

3.6.2 THIMBLE IONIZATION CHAMBERS

The two types of thimble ionization chambers used for these mea-

surements were fabricated by the Landsverk Electrometer Company, and

are shown diagrammatically in Figs. 3.22 and 3.23. An exploded view of

one of these is shown in Fig. 3.24, and a photograph of the dosimeters is

shown in Fig. 3.25. The chambers were hermetically sealed so that they

could be immersed in water without discharging them, They were charged

and read by exerting pressure on the contact pin; this stretches the bellows

antilthe pin makes contact with the electrode (see Fig. 3.22).
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Fig. 3.25--Landsvcrk dosimeters and charger-reader
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The charger reader was a Landsverk Model L-64. This unit has

a small capacitance compared to that of the ionization chambers and there-

fore can be ignored. The electrical leakage rate of the dosimeters was

about 2% full scale per day.

The design of the thimble ionization chambers is discussed in

the following two sections.

3.6.2. l Graphite-Carbon Dioxide Thimble Ionization Chambers

Sixteen chambers having graphite walls, filledwith carbon dioxide,

and sensitive primarily to energy deposition from gamma rays were used.

These devices have a small inherent neutron sensitivitydue to carbon re-

coils. However, because of the short range of the recoils, virtually all

of the response results from ionization created by particles originating

in the gas. In order to reduce the response to ionization produced in the

cavity by proton recoils from the polystyrene insulator the chambers were

designed so that only a small solid angle was ,, ,_tended by the effective

cavity volume at the insulator. This is the purpose of the 0. 015-in.

thick aluminum shield shown in Figs. 3. ZZ and 3. Z3. The effectiveness

of this design is aided by the poor collection efficiency near the insulator.

The outside diameter of the chambers was limited to 0. 490 in. so that

they would fit into the center of the fuel element support post and the

poison tubes. This limited the thickness of the graphite walls to 0. 544
Z

gm/cm which exceeds the range of a 1.Z5 Me V electron and corresponds

to charged particle equilibrium TM4) for a 1.5 MeV photon. During the

measurements the ionization chambers were surrounded by aluminum in

the fuel elements and both aluminu,n and water in the poison tubes; this

in effect increased the thickness of wall material surrounding the ionizable

volume of the chambers. Generally, equilibrium ionization is reached

at thicknesses much less than the range of the highest energy secondary

electron. Assuming that only aluminum surrounded the ionizable volume,

then for the Compton region the absorbed dose would be 4_/0 less than for
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carbon. Under the same assumptions, the absorbed dose in water would

be Ii% more. (5) Since the carbon walls are an equilibrium thickness for

1.50 MeVgammas, only those gammas above this range are in question.

However, in the worst case, i. e., assuming water around the carbon wall

dosimeter, and also since only about 0.4 of the fission energy is above this

value, the error caused by the walls not being in equilibrlum should be not

more than 4%. The graphite-carbon dioxide dosimeters are 1.9 in. long
3

and have an ionizable volume of 0. 176 cm . The 0. 064-in. diameter

aluminum-graph_te electrode structure shown in Fig. 3.2.2 gives the elec-

trode stability and helps tailor the energy response while limiting the

amount of aluminum in the ionizable volume.

3.6.2. Z Polyethylene-ethylene Thimble Ionization Chambers

Nine polyethylene wall ethylene-filled chambers were used. They

are sensitive to energy deposition from both gamma rays and fast neu-

trons. Physically they were I. 85 in. long with an ionizable volume of
3

0. 040 cm as shown in Fig. 3.23. The aluminum electrode is 0. 025 in.

in diameter. The diameter of these chambers was also limited to 0.490

in. for the same reasons as the graphite walldosimeters, resulting in a

wall thickness of the polyethylene of 0. 385 gm/cm Z. This thickness ex-

ceeds the range of the I. 0 MeV electrons, providing an equilibrium thick-

ness for I. 25 MeV gamma rays. The polyethylene-walled ionization

charnbezs were placed mainly in poison tubes and therefore, for most of

the measurements, were surrounded by water. Since the absorbed dose

in water and polyethylene varies by only about 3% in the Compton region,

this increa_ces the effective thickness of the wall material surrounding

the ionizable volume, reducing the maximum error caused by the walls

not belng infinite to 3%.
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3.6.3 ABSOLUTE CALIBRATION OF THE ENERGY DEPOSITION IN

THE GRAPHITE CHAMBERS

The graphite-walled carbon dioxide-filled thimble ionization

chambers were absolutely calibrated by comparison with a Victoreen

Model 70-5 thimble chamber.

A 7 MeV beam of electrons from the General Atomic linear accel-

erator impinged upon a thick fansteel (89% tungsten, 7% nickel, 4% copper)

target, producing a bremsstrahlung spectrum with nearly a fission source

distribution. Since the electron beam was 7 MeV, which is below the

threshold for (¥, n) reactions, no neutrons were produced. A 4-in. thick,

12-in. dian eter graphite disc, shown in Fig. 3.26, was placed 74 in.

from and on the center line with the bremsstrahlung target. Eighteen

1/2-in. diameter holes 2-3/4 in. deep were drilled into the disc on a

9-in. diameter circle. One of these holes was enlarged to accomodate

the Victoreen chamber. The thickness of graphite between the ionization

chamber and the front surface of the disc was 3.2 cm, being slightly

greater than the range of a 7 MeV electron. During the measurements,

the disc was rotated at 2 rpm to insure a uniform dose to each of the dosi-

meters. All of the graphite dosimeters were placed in the graphite disc

at the same time, eliminating any intercalibration errors ar',ong the

dosimeters.

Since the range of the Victoreen dosimeter was limited to 25

roentgens and the Landsverk dosimeters have a range of several thousand

roentgens, a photodiode-plastic fluor detectm "_6)"" was used to monitor the

measurements and perform an inter calibration. All of the Landsverk car-

bon-walled dosimeters were intercalibratei on a relative basis during a

single measurement. The instantaneous dose rate was 1 x 103 r/sec,

using a pulse length of 4.5 /_sec and a pulse repetition rate of 180 per sec

from the Linac, yielding a total dose of approximately half scale or about

1400 roentgens for a running time of 30 minutes. The Victo:reen chamber
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Fig. 3.26--Dosimeter calibration apparatus
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has a linear response at dose rates below 5 x 104 r/sec; (6) it is expected

that the Landsverk dosimeters are linear up to at least 3 x 103 r/sec.

The exposure level of the Victoreen thimble chamber versus the

monitor reading was measured several times to obtain an average value;

the maximum deviat:on was less than 1%. The same geome**ry used for

the Landsverk dosimeters was used for this measurement. For each mea-

surement the Victoreen dosimeter was irradiated for a length of time suf-

ficient to obtain a midscale reading.

The Victoreen ionization chamber reading was corrected by the

ratio of the monitor readings for the twr, measurements and converted

to rads by the conversion factor 1 roentgen equals 0.87 tad. The per-

cent of full scale for the Landsverk carbon wall dosimeters was multi-

plied by 2500 rads, which was the expected'full scale reading, and divided

by the corrected value of the Victoreen ionization chamker,reading in fads

to give the sensitivity of the Landsverk dosimeters. The Landsverk cham-

ber reading divided by the sensitivity was used to give the true absorbed

dose. It is estimated that this absolute calibration procedure gives the

true absorbed dose within + 5%. The possible individual errors in this

calibration are summa_ ized below:

± 2% in the average energy to produce an ion pair in air for
the roentgen-to-rad conversion.

± Z_/0in the reading of the Landsverk dosimeters

2a/0 in the reading of the Victoreen dosimeter

± 1% in the value used to convert the Victoreen ionization

chamber reading to the intercalibration run for the
Landsverk ionization chambers.

± Za/0 in the monitor readings

± _/0 in the true roentgen value of the Victoreen dosimeter.

In this calibration, the Victoreen ionization chamber behaves as

a thin-walled ionization chamber filled with air and surrounded by an

air equivalent material, in this case carbon. The mass energy absorption
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coefficient for carbon and air is the same for electron energies from

7 MeVto abou_ 150 keV. The Victoreendosimeter has a nylon wall with
2

a nominal thickness of 67 mg/cm which is infinite to a 270 keV electron.

It is intended for use over an effective energy range of 30-400 keV. In

the energy range of 30 to 400 keV the chamber had an efficiency of I. 00.

However, even at 20 keV its efficiency drops only to 0.90 and at 10 keV

it is about 0.65. Therefore, the Victoreen ionization chamber behaves

as an air-equivalent dosimeter under the conditions discussed above from

about 7 MeV to about Z0 keV.

The results of the absolute calibration of the graphite wall carbon

dioxide-filled Landsverk dosimeter are tabulated in Table 3.26. A typical

energy response curve for the carbon chamber is shown in Fig. 3.27 and

for a polyethylene chamber in Fig. 3. Z8. The energy response for each

dosimeter is listed in Table 3.27 as measured by the Landsverk Electro-

meter Company.

The polyethylene chambers were also placed in the graphite disc

as a means of intercalibration. Since the walls of these chambers are

polyethylene the absorbed dose is characteristic of polyethylene and there-

fore roughly 1.14 larger th_n the dose in carbon. On this basis an esti-

mate of the tad value of the polyethylene chambers can be made; it is

shown in Table 3.26.

3.6.4 ABSOLUTE CALIBRATION OF THE ENERGY DEPOSITION IN
THE POLYETHYLENE CHAMBERS

3.6.4. I Design Considerations of the Calorimeter

' A calorimeter was designed and built to provide a n_eans of cali-

bration for the polyethylene dosimeters. Water was used for the neutron

energy absorbing medium of the calorimeter. Because fluxes produced

in the NUROC core when it is operated around lO0 watts are insufficient

to produce an appreciable temperature rise rate in water (-_ lO-4°C/min
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Table 3.26

DOSIMETER CALIBRATION USING 7.0 MeV BREMSSTRAHLUNG
RADIATION

Dosimeter Reading in
Landsverk % of Full Scale Rad Value Corrected Dosimeter
Dosimeter Uncorrected Drift Corrected Obtained from _'ullScale Rad Value

Number Reading Correction Reading Victoreen R Meter Indiv. Run Average

C-I 56.4 0 56.4 2300 4078 4039

C-I 51.0 0 51.0 2030 3980

C-2 63.5 0 63.5 2300 3622 3622

G-3 63.5 0 63.5 2300 3622 3573

C-3 57.6 0 57.6 2030 3524

G=IA 63.2 0 63.2 2300 3639 3639

C-5 57.9 0 57.9 2300 397Z 3941

C-5 51.9 0 5!.9 2030 3911

C-6 56.0 0 56.0 2300 4107 4:07

G-7 58.0 0 58.0 2300 3966 3928

G-7 52.2 0 52.2 2030 3889

G-8 63.2 0 63.2 2300 3639 36:9

C-9 56.8 0 56.8 2300 4049 4038

G-9 50.4 0 50.4 2030 4028

G-lO 61.4 0 61.4 2300 3746 3746

, G-ll 56.2 0 56.2 2300 4093 4089

C-li 49.7 0 49.7 2030 4085

C-lZ 60.9 0 60.9 2300 3777 3777

C-13 71.5 0 71.5 2300 3217 3194

C-13 64.0 0 64.0 2030 3171

C-14 58.9 0 58.9 2300 3905 3886

C-14 52.5 0 52.5 2030 3866

C-15 61.8 3.7 58. I 2300 3959 3959

C-16 65.2 .6 64.6 2300 3560 3560

P-I _6.9 0 26.9 2630 9?80 9530

P-I 25.0 0 25.0 2320 9280

P-2 22.2 0 22.2 2320 10440 10440

P-3 22.3 0 22.3 2320 10400 10400

P-4 23.6 0 23.6 2320 9840 9840

P-5 22.0 0 22.0 2320 19530 10530
)

P-6 25.5 0 25.5 2320 9100 9100

'-7 26.8 0 26.8 2320 8650 8650

P-8 28.0 0 28.0 2320 8280 8280

P-9 22.0 0 22.0 2320 10530 10_30
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Table 3.27

THE LANDSVERK ELECTROMETER COMPANY

CALIBRATION CERTIFICATE*

Serial No. Range CO 60 120 keV 80 keV 46 keV

Cl 2500 RAD 76.2 81.1 89.6 46.6

(Carbon)

C2 " 78.4 82.5 90.3 44.3

C3 " 94.4 93.5 88.8 51.2

C4 " 74.0 73.3 66.9 35. ?

C5 " 86.0 84.8 89.6 43.7

C6 " 84.4 83.6 77.7 42.9

C7 " 87.0 86.0 81.6 46.0

C8 " 84.8 84.2 76.8 4Z. 0

C9 " 80.0 79.4 82.7 40.0

CI0 " 90.2 89.3 81.9 43.5

CII " 85.6 84.8 80.3 41.7

C12 " 85.2 84.4 77.3 4"I.7

C13 " 107.2 106.2 96.0 49.2

CI4 " 85.8 85.0 81.4 43.2

C15 " 84.4 83.4 75.5 42.4

C16 " 94.0 93. 1 85.4 44.3

Pl 5000 RAD 88.6 93.9 90.6 51.8

(Polyethylene)

P2 " 78.0 83.2 81.5 46.8

.°3 " 81.2 82.3 78.6 45.4

P4 " 94.4 192.9 103.8 60.9

i:)5 " 80.0 85.3 84.4 49.4

P6 " 75.2 72.9 69. Z 36.1

P7 " 89.8 132.9 86.9 47.9

P8 " 84.6 86.5 85. Z 43.2

P9 " 80.9 85.3 86.6 46.5

*Dated November, 1965
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at 100 watts could be expected), the calorimeter was designed to be used

in the Torrey Pines TRIGA Mark I reactor which may be operated at a

much higher power and hence produce a much greater temperature rise

rate. The outer jacket of the calorimeter was held to a maximum dia-

meter of I.250 in. to allow itto fitinto a tube in the TRIGA core. Since

the size was restricted, an adiabatic jacket was used to reduce heat trans-

fer between the water absorbing mass and its environment. This adiabatic

jacket was placed half-way between the outer jacket and the water mass

and was made of aluminum and epoxy with a nichrome heating coil potted

into the epoxy; adjustment of the power dissipated in the coil almost com-

pletely eliminated heat transfer between the water mass and its environ-

ment. Heat transfer was further reduced by using fine (.006 in. diameter)

copper connection wires to lead into the water mass, keeping all heat paths

between the water mass and the adiabatic jacket long and of small cross

sectional area. All interior surfaces were painted white and the area

around the jacket was evacuated. Since the neutron and gamma energy

would be absorbed by the vessel walls as well as by the water, the vessel

was designed to have a small mass compared to the water mass. Sheet

polyvinyl chloride (PVG) was thermoformed into a two-piece bottle with

approximately .004 in. thick walls. A thin (_ .002 in.) coating of epoxy

was painted on the outside of the vessel to eliminate vapor pumping since

the PVG is not impervious to water vapor. Details of the calorimeter

are shown in Figs. 3.29, 3.30, and 3.31.

Fine control of the temperature difference between the water mass

and the adiabatic jacket and the abilityto accurately sense small incremen-

tal temperature changes in the water mass dictated the use of thermistors

as temperature sensing elements. The thermistors selected were Fenwall

bead, type GA 45JI, with a nominal resistance at 25°G of 50, 000 ohms_ a

spherical diameter of .043 in. and a temperature coefficient of resistance

of 4.6%/°G. A pair of these thermistors, matched to within 0.2% of each

t
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other, were imbedded, one in the adiabatic jacket and one in the water

mass; they form two legs of a bridge circuit as shown in Fig. 3.31 and

are used to control the temperature of the adiabatic jacket with respect

to the water mass to eliminate heat transfer. An additional thermistor

in the water mass forms one leg of the other bridge circuit of Fig. 3.31

and is carefully calibrated to allow accurate monitoring of the rate of

temperature rise in the water mass. The calibration procedure for the

thermistor was as follows: The entire water nlass assembly was placed

in a large volume of water contained by a vacuum-jacketed glass-walled

flask. A copper-constantan thermocouple _vas located on the surface of

the calorimeter water mass and, using an ice bath cold junction, connected

to a Rubicon precision potentiometer which allowed accurate determination

of the temperature of the water bath. A battery-driven resistance heater

was used to raise slowly the temperature of the water bath and the calori-

meter water mass assembly suspended within it. The output of the bridge

circuit as a function of temperature change was monitored by the Hewlett-

Packard 4ZSA microvoltmeter and a Varian strip chart recorder, and was

found to be 14.85 millivolts per degree centigrade which agreed very well

with calculations based on the manufacturer's rated temperature coeffi-

cient of resistance. This constant was used in the analysis of subsequent

measurements. A 4. Z5-ohm nichrome heater coil was included in the

water absorbing mass to control the temperature and provide a check on

the operation of the system.

3.6.4. Z Calorimeter Operation

Once the jacket controls were correctly adjusted, the calorimeter

was tested by applying power to the water mass coil and observing the

rate of temperature rise of the water mass on the strip-chart recorder.

The slope of the temperature rise curve (in millivolts per minute) gives

the heating rate since the thermistor constant is known to be 14.85 milli-

volts per degree centisrade.

"4_ @
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When the calorimeter was operated in the reactor, a temperature

rise rate of 0.08Z c'° centigraae per minute was observed at a steady state

reactor power level of 10 kilowatts; this rate was obtained from the re-

corder trace which showed a voltage change rate (due to the change in re=

sistance in the calibrated thermistor in the water mass) of 1.23 millivolts

per minute. Since 0.0829°C/minute corresponds to 0.0829 gram=calories

per gram per minute for pure water at 13CC (the temperature of the re-

actor water during the calibration runs) the heat input rate to the calori-

meter water mass is given by

7
0.0829 gram-calories/gram=minute x4.19 x 10 ergs/gram-calorie

= 3.47 x 10" ergs/gram=minute

and the dose rate in water is

3.47 x 106 e.rgs/gram=minute = 3.47 x 104 fads/minute a_ 10KW

10 Z ergs/gram=rad

The reactor p_wer level during the irradiation of the dosimeters

was 1.8 kilovolts; therefore the dose rate in water corrf:sponding .'o the

readings of the dosimeters is 6250 rads/minute.

As a check on the calorimeter operation, the reactor was operated

at 20 kilowatts with a heating rate of • !67°C/rain bein$, obtained in the

calorimeter water mass. Doubling the power doubles the heating rate

which indicates that the relative po.Jer rates of the reactor are well

known and that the calorimeter is able to accurately follow the reactor

power level changes.

The results of the absolute calibration of the polyethylene in chain=

bets against a water calorimeter is shown in Table 3.28. Also shown in

the calibrated tad _'eading of several carbon ion chambers which were

placed in the same reactor core position as the polyethylene chambers.

q
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Table 3, 28a

CALIBRATION OF THE ION CHAMBERS IN THE
T RIC-t, REACTOR

Dosimeter Reading in
Landsverk Percent of Full Scale Rad Valuf; Corrected Dosimeter
Dosirneter Uncorrected Position Corrected Obtained from Full Scale Rad Value

Number Reading Correction Reading Calorimeter Individual Run AveraBe

P-I 9.5 982 48.6 6250 ,2°.60 12860

P-2 41. I l 02 41.9 6250 " _,"Z0 14920

P-3 43.4 1 02 44.3 6Z50 14090 14090

P-4 45.0 982 44. 1 6250 1,i190 14190

P=5 43, 1 1 02 43.9 6250 14L,'O 14220

P-6 55.4 982 54.4 6250 11480 11400

P-6 56.3 982 55.3 6,'50 1131C

P-7 50, 4 1.02 51.4 6ZSO 12150 12150

P-8 51.5 .982 50.6 6:50 12360 12360

P-9 43.5 .982 42.7 SZ50 14620 14620

P-9 41. 3 1.02 4,_. 2 6250 14810

P-9 42.4 1.0Z 43.3 6,'50 14420

Table 3.28b

Dosimeter Reading in #

L_ndsverk Percent of Full Scale Rad Value for Dosimeter
Dosimeter Uncorrected Position Gorrected Reading Corresponding

Number Readin s Correction Readin[_ to Percent Full Scale

C-2 60.8 1.02 62.0 2246

C-5 57.4 1.02 58.6 2309

C-9 53.3 1.02 54.3 2152

C-14 56.5 .982 55.5 2196

"i

!
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3.6.5 THIMBLE IONIZATION CHAMBER MEASUREMENTS !N CORE III
OF THE TUNGSTEN NUCLEAR ROCKET REACTOR

The Tungsten Nuclear Rocket Reactor co:'eexhibited a twelve-

fold symmetry as shown in Fig. Z.6, Section 2. Z.I. All of the thimble

ionization chamber measurements were made in one sector of symmetry.

The placement of these chambers is shown in Fig. 3.32. A total of 25

ionization chambers was used for each measurement: 16 graphite and 9

po!yethylene wall chambers. A total of four runs was required; the power

level for each run was 84. Z watts.

The ionization chambers were placed above and below the zircon-

ium stud in the fuel elements using 3/8-in. diameter by 0. 060-9n. wall

thickness aluminum tube spacers. In the poison tubes, 5/16-in. dia-

meter, 0.06-in. wall thickness aluminum tube spacers were used and

the void between chambers was filledwith cadmium nitrate. For each

run the same graphite-walled chamber was placed in the G-7 fuel element

and the same polyethylene chamber in the G-16 poison tube to monitor the

relative power level between runs. The relative variation in the power

level from run to run as indicated by the ionization chambers was about

3_/0.Each run lasted 40 minutes as the reactor was being brought to power,

and the period of the reactor was 30 seconds, making a total of about 139

seconds to reach fullpower. This is about 6_0 of the total running time.

Ittook approximately 8 minutes to remove the chambers from the poison

tubes and about 10 minutes from the fuel elements after the reactor was

shut down.

b

3.6.6 TIME HISTORY OF THE GAMMA INTENSITY IN CORE III OF

THE TUNGSTEN NUCLEAR ROCKET REACTOR

A determination of tl_e gamma intensity time history was made for

each of the four reactor operating runs in which dosimetry measurements

,-,<, _ made. A gamma scintillation detector capable of discriminating
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against fnst neutrons was used. The recorded output of this detector

provided a measurement of the relative gamma intensity from the reactor

core as a function of time. The contribution of delayed gammas to the

prompt radiation is illustrated in Figs. 3. 33 to 3.36.

The scintillating solution used in the gamma detector employed

the nonhydrogeneous hexafluorobenzene (C6F6) as a soh:ent (7' 8) in order

to discriminate against fast neutrons. Small concentrations of two hydro-

geneous scintillators were used in solution; para-terphenyl at 4 grams

per liter and dimethyl POPOP at one gram per liter. The binary solu-

tion was sealed in a ten-milliliter pyrex flask in an argon atmosphere

(9)
to prevent oxygen quenching of the scintillations which were observed

by a DuMont 6Z92 photomultiplier tube. The output current from the

photomultiplier varied between 1.5 x 10 -8 ampere and 4.5 x 10 -7 ampere

and was recorded on a graphic recorder.

The detector was positioned about two feet above the beryllium

reflector at the edge of the core. The relative intensity of the gamma

radiation was measured as a function of time for each of the four re.actor

operating runs in which the gamma and neutron fluxes were mapped using

the carbon and polyethylene ion chambers.

The relative gamma intensity as a function of time for runs 1

through 4 is illustrated in Figs. 3. 33 through 3.36 respectively. Typical

of each curve is the exponential increase in intensity on the 30-second

period of the reactor as it is brought up to power, leveling off at a con-

stant value of 84. Z watts. Each run was continuous for approximately

40 minutes with the exception of run I in which a scram occurred during

the run.

These graphs have been corrected for background effects, includ-

ing residual nuclear radiation and detector dark current. An examination

of each of the curves confirms the expected buildup in intensity of delayed

gammas from fission during the run and the gradual decay after shutdown.
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For runs 2, 3, and 4 the intensity of delayed gamma radiation just prior

to shutdown of the reactor is 19.7%, 18.9%, and 19.0% respectively, of

the prompt gamma intensity. These numbers correspond very well with

the point on the intensity curve where the exponential decay begins at

reactor shutdown. The decay tail of delayed gammas is clearly a com-

posite of several decay modes: the longest mode measured here, using

the data for runs Z and 3, corresponds to a half-life of approximately 40

m inut e s.

3.6.7 RESULTS AND DISCUSSIONS OF SOURCES OF ERROR IN THE

ABSORBED DOSE MEASUREMENTS IN CORE IllOF THE

TUNGSTEN NUCLEAR ROCKET REACTOR

The results of the axial measurements of the gamma and neutron

absorbed doses in Core III of the Tungsten Nuclear Rocket Reactor are

graphed in Figs. 3.37, 3.38, 3.39, and 3.40 and tabulated in Table 3. zg.

The lines are the "best fit" to the data. The arrows on the graphs indi-

cate possible defective data. The C-15 carbon dosimeter had an excep-

tionally high drift rate for which it was difficult to accurately correct.

One reading of the C-1A carbon chamber reading is also suspect due to

rough handling. The readings of the P-6 polyethylene dosimeter are sus-

pect because fhe intercalibration ratio for the 7 MeV bremsstrahlung and

the water calorimeter were different.

Two important considerations need to be elucidated. The poly-

ethylene chambers were calibrated against a water calorimeter. This

means that the absorbed dose for these chambers is characteristic of

water and not polyethylene. Further, since they were calibrated in the

TRiGA Mark I, the validity of their calibration is predicated on the basis

that the gamma and neutron spectra in Core III of the Tungsten Nuclear

Rocket Reactor is similar to that in TRIGA Mark I. The degree of accur-

acy of the calibration of the polyethylene dosimeters depends on the de-

gree of accuracy of this assumption. The carbon dosimeters have been
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Table 3.29

RESULTS OF IONIZATION CHAMBER MEASUREMENTS IN CORE IIl
OF THE TUNGSTEN NUCLEAR ROCKET REACTOR

Distance from Dosimeter

Po.son Core Bottom Plate Dosimeter Reading in % Normalizing Absorbed Dose
Tube or Surface to Center Number of Full Scale Factor to Run in Water at Point

Fuel of Dosimeter C=Graphite (Corrected for I using C-14 of Measurement

Element Active Volume, cm P=Polyeth_lene Drift) _ as a Monitor Rads

G-2 9.4 C-16 19.2 1,021 684
G-2 37. l C-li 24.8 1.021 1014

G-Z 62.1 C-I 23.9 1. 021 945
G-2 105. 1 C-12 9.4 1.021 355

G-2 67.0 P-I 22.8 1. 021 3000

G-4 9.4 C-5 26, 0 1. 009 1025
G-4 37. 1 C-I 34.8 I. (}09 1406
G-4 62.1 C-6 35. I 1 021 1442
G-4 84.7 C-7 26 2 1. 009 1029
G-4 105. ! *C-15 _.8 1.021 190

G=4 32.4 * P-6 7.1.,.8 1. 036 3370
G-4 67.0 P-2 29.8 I. 021 4540

G-7 9.4 C-5 30.0 1. 026 1182
G-7 37.1 C-IZ 44.3 1 026 1673

G-7 62.1 (Run 1 43. 1 1 000 ]675
G-7 62. l (Run 2 42. l l 026 1636
G-7 62.1 C-14 (Run 3 42.3 1 021 1644

, G-7 62.1 (_ 42.8 1 009 1663
G-7 84.7 "_C-,_ 22.9 1 026 907

G-7 105.1 *C-t5 5. I I 000 202

J-3 9.4 C-._a 31.7 1. 021 1012
J-3 62. I C-IZ 35. 1 1. 000 1326
J-3 105.1 C-16 11.3 1 6_:_ 402

K-I 9.4 C-16 16.8 | ,,-':: 598
K-I 37. 1 C-II Z3.8 t '._, 973
K-I 62.1 C-ll 23.6 _ 000 965
K-I 84.7 C-I 17. l 1.026 691
K-I 105. I C-13 I0.6 i 000 339

g-4 6.6 C-3 21.6 I. 026 772
8-4 37.1 C- IA 25.3 1. 026 922
g-4 62. I C- 1 23.6 1. 000 953
g-4 110.0 C-3 6.6 1. 000 236

\
8-4 11.4 P-I 17.8 1. 026 2345
8-4 3Z. 4 P-5 21.6 1. 026 3150 •
g-4 67.0 P-2 20.6 1. 000 3070
g-4 80.0 P-4 18.3 1. 026 2670
8-4 1G5.3 P- l 8.6 I. 000 !105

• Suspected defective dosimeter
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Table 3.29 {Continued)

Distance from Dosimeter

Poison Core Bottom Plate Dosimeter Reading in % Normalizin 8 Absorbed Dose
Tube or Surface to Center Number of Full Scale Factor to Run in Water at Point

Fuel of Dosimeter C=Grsphite (Corr_.cted for I usin 8 C-14 of Ivieasuremen_

Element Active Volume, cm P=Polyeth_lene Drift) _s a Monitor Rads

8-6 6.6 C-3 7-3.3 1.0Zl 833
g-6 37. I C-5 30.8 I. 021 1214
8-6 62.1 C-12 30.5 1. 009 1152
g-6 84.7 *C-15 13.6 I. 009 538
8-6 ll0.0 C- 13 5.6 I. 009 179

8-8 6.6 C-2 23. 1 1. 026 837
g-8 37. 1 C-6 33.5 I. 026 1376
8-8 62. 1 C-7 35.1 1.000 1271

• 8-8 84.7 C-IA 25.1 1.000 913
g-8 110.0 C-10 8.6 1. 000 322

8-8 11.4 1'-3 72.3 1. 026 3370
g-8 32.4 P-2 28.6 1. 026 4380
g-8 80.0 P-5 23.6 1. 000 3360
g-8 105.3 P-4 10.6 1. 000 1490

8-10 6.6 C-10 ?5.3 1. 026 948
g-10 37. I C-7 37.3 I.026 1465

g-10 62. I C-5 36.6 1. 000 1442
8-10 84.7 C-13 31, 2 1. 076 997
g-10 109.7 C-6 8.6 1. 000 3_3

g-12 6.6 C-9 23.8 1.0_6 961
g-12 37. l G-8 48.5 1. 076 1765
g-12 62. I C-7 38. I I.000 1497

g-12 84.7 C-8 34.6 1. 000 1259
g-lZ 110.0 C-9 8.6 1. 000 347

g-17 11.4 P-7 27.0 1. 096 3370
g" 12 37.4 P-8 40.4 1. 026 5030
g-12 (3.0 * P-6 29.6 1. 000 3375
g-12 80.0 P-8 32.6 1. 000 4040
g-lZ 105.3 P-7 12.1 1. 000 1470

h-8 6.6 C-16 29.5 1. 009 1050
h-8 37. 1 C-lO 36.8 1. 009 1379
h-8 61.1 C-7 33.5 1. 021 1316
h-8 84.7 C-8 29.9 1. 021 1088
h'8 110.0 C'9 7.3 I. 021 295

h-8 11.4 * P-6 21, "_ 1. 009 2450
h-8 32.4 P-5 29.3 1. 009 4210
h-8 67.0 *P-6 25.8 1. 021 3000
h-8 80.0 P*8 29.0 i. OZI 3660
h-8 105.3 P-7 10. 8 1. 021 1360

*Suspected defective dosimeter

l
J
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Table 3.29 (Continued)

Distance from Dosimeter

Poison Core B_ttom Plate Dosimeter Reading in % Normalizing Absorbed Dose
Tube or Surface to Center Number of Full Scale Fa,:tor to Run in Water at Point

Fuel of Dosimeter C-Graphite iCorrected for 1 using C-14 of Measurement

Element Active Volume, cm P=Polyethylene Drift t as a Monitor Rads

j-4 6.6 C-9 17.8 1. 009 719
j-4 37.1 C-8 34.0 1. 009 1237
j-4 62.1 C-2 27.5 1. 021 996
j-4 84.7 *C-IA 5.9 1. 021 215
j-4 110. 0 C-10 6.7 1. 021 251

j-4 11.4 P-7 19.6 1. 009 2405
j=4 32.4 P-8 29.1 1. 009 3630
j-4 67.0 P-3 24.4 1. 021 3510
j-4 80. 0 P-5 18.8 1.0Zl 2730
j-4 105.3 P-4 9.0 1. 021 1305

k-I 6. b C-3 18.3 1. 009 654

k-1 37. I C-6 24.8 1. 009 1019
k-1 62.1 C-2 25.0 1. 009 906
k-I P4.7 C-II 16.9 1. 009 691
k-I 110. 0 C-IA 5.3 1. 009 193

k°l 11.4 P-I 17.6 1. 009 2285
k-I 32.4 P-2 21.1 1. 009 3180
k-I 67.0 P-3 20.3 1. 009 2890
k-I 105.3 P-4 7.3 1. 009 1034

g-16 Z3.5 P-9 31. 1 1. 000 4540
g- 16 23.5 P-9 30.8 1. 026 4620
g-16 Z3.5 P-9 30.3 1. 021 4530
8-16 23.5 P-9 31.3 1. 009 4620

*Suspected defective dosimeter
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found to have an inherent response to neutrons. This response is diffi-

cult to determine precisely but has been estimated to be about 28%, and

is also contingent upon the above discussed assumption. The neutron re-

sponse of the carbon chamber was estimated by placing some of the car-

bon chambers in the same position as the calorimeter was placed. The

ratio of the gamma dose in water to the dose in carbon is DHz0/D C = 1.11.

The ratio of the neutron dose in water to the dose in carbon is DHzo/D C =

7.0. If the gamma dose in carbon is represented by A and the neutron

dose in carbon by B then:

Carbon: A + B = R 1

Water: l. ll A + 7 B = R Z

Where R l and R Z are the rad values obtained for the carbon chamber and
(lO)

the water calorimeter respectively. If these equations are solved

simultaneously then the neutron response of the carbon chamber can be

• determined and is B/R 1. The data have not been corrected for the fast

neutron response of the carbon chambers. It should be pointed out that

the neutron response of the carbon chambers is a strong function of neu-

tron energy and that additional calculations are required to determine the

average response in the core spectrum.

It is estimated that the absolute calibration procedure for the poly-

ethylene chambers gives the true absorbed dose in water within ± 8%.

The possible individual errors in this calibration are summarized

below:

+ 2,010in the reading of the Landsverk dosimeter

± 2% in the relative monitor of the TRIGA power level

± 2% in the uncertainty in time of the insertion of the dosimeters
in the TRIGA core.
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+ 7% in the calibration of the calorimeter

+ 1% in the dosimeter position corrective factor.

The possible individual errors in the measurements in Core III

of the Tungsten Nuclear Reactor are summarized below:

± 2% in the reading of the Landsverk dosimeter

± 8_0 in the absolute calibration of the polyethylene chamber

± 5% in the absolute calibration of the carbon dosimeters

± 3_/0 in the time at which the reactor is at maximum power
level.

A negligible error was in the dose received by the chambers

while being removed from the poison tubes and fuel elements. The fuel

elements were reading an average of Z r/hr at the surface and the dosi-

meters remained in the fuel elements for a maximum of 15 minutes after

the run.

On this basis the probable error in the measurements using the

polyethylene chambers is ± 9_/0; for the carbon dosimeters it is ± 6_/0.

t
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IV. ANALYTICAL METHODS

4. 1 COMPUTATION OF THE SPATIAL FINE STRUCTURE IN A CELL

A unit hexagonal cell was defined, and homogeneous atom densities

appropriate to this cell were obtained. The thermal spectrum (0 to 2.38

eV) was calculated in the P-I approxinqation, using the GATHER-I[ code. {llj'"

The scattering kernel as developed by Nelkin was used for hydrogen bound

in water. One-hundred and one pointwise values of the cross sections were

averaged over the thermal spectrum to obtain multigroup thermal cross

sections for the spatial fine structure calculations. The fast spectrum

(2.38 eV to 14.9 MeV)was calculated in the B-I approxirnation, using the

GAM-II (12_'"code with a U.-235 fission source. Ninety-nine group values of

the cross sections were then averaged over the calculated fast spectrum

to obtain multigroup epithermal cross sections for the spatial fine structure

calculations.

Once the multigroup cross secti_,ns were obtained, the spatial fine

structure of the flux in the unit cell was computed to obtain cell disadvan-

tage factors. The disadvantage factor in energy group "i" for nuclide "r"

was defined in the following manner:

i fNn (r) i(r)d3r, ' (4, 1)

gn=f i(r)d3rfNn(7)d3r

4-I
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where _0 is the scalar flux, N is the atom density, and V is the total cell

volume. Since the flat flux assumption in the high energy region is invalid

for highly heterogeneous cells, high energy as well as thermal disadvan-

tage factors (sometimes called advantage factors in the high energy region)

were obtained in the epiresonance region (> 60 keV) of the spectrum. The

details of this calculation, and in particular the validation of the white

boundary condition for high energy fine structure calculations in the Wigner-

Seitz(13) approximation, are discussed below.

The Carlson discrete angle S method (14) was used for all cell cal-n

culations. The disadvantage factors for all nuclides except cadmium were

obtained by representing the hexagonal unit cell in the Wigner-Seitz approxi-

mation and utilizing the white boundary condition. (The cadmium poison was

treated separately, and the calculation of the cadmium disadvantage factors

is discussed in Section 4.11.) Terms through P1 were retained in the scat-

tering kernels. The high energy disadvantage factors were obtained from

one-dimensional calculations in the S 8 approximation using the GAPLSN

code. (15)
Thermal group disadvantage factors were computed in the S 4

approximation and the calculations were performed in both one-dimensional

and two-dimensional r-z geometry.

4. Z HIGH ENERGY DISADVANTAGE FACTORS

Highly heterogeneous reactor cells may exhibit fine structure in

the high energy neutron flux that must be considered in an accurate calcu-

lation of the fast neutron effective cross sections. In particular, the proper

spatial flux weighting of the cross sections in a water lattice is necessary

for an accurate evaluation of the high energy leakage. Hardy and Klein (16)

have measured the fast neutron fine structure in a series of uranium-water

lattices, and have analyzed the experiment with Monte-Carlo calculations.

It is desirable, however, to compute the fast flux fine structure with con-

ventional transport cell _alculations, in the same manner that the thermal

neutron fine structure is usually computed.
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Survey calculations of thermal neutron disadvantage factors in

reactor cells are generally accomplished in the Wigner-Seitz'(WS)

cylindrical-cell approximation. Thie (17) demonstrated that high order

transport calculations of small cells in the WS approximation together

with the reflective-boundary condition can lead to significant errors in

the disadvantage factors. Thie studied six tightly-packed square lattices,

with moderator (HzO) thicknesses less than 0.5 mean free path in the

equivalent cylindrical cell. Several authors ( 18, 19, 20', 21) have subsequently

discussed this problem. Honeck (19) suggested an isotropic flux return

at the boundary of the WS cell, which he implemented by surrounding the

moderator with an optically thick, pure isotropic scatterer. Weiss and

Stamm'ler (Z1) subsequently verified that Honeck's "white" boundary con-

dition, used in conjunction with a transport calculation in the WS approxi-

mation, gives good agreement with Monte Carlo results (which were con-

firmed using a collision probability technique) for the Thie lattices.

In the calculation of high energy disadvantage factors, the ques-

tion of the appropriate cylindrical cell boundary condition arises because

the cell dimensions are generally small in comparison with a neutron mean

free path. A re-examination of the issue is justified because of basic dif-

ferences between the thermal and the high energy problems. In the high

energy problem, the source is in the fuel zone rather than in the modera-

tor. Furthermore, the flux in the moderator is likely to be highly aniso-

tropic, which brings to suspect a boundary condition based upon an iso-

tropic flux return.

To examine this problem, transport calculations were performed

using both reflective and white boundary conditions in the cylindrical cell

approximation, and the results were compared with equivalent two-dimen-

sional calculations for simple two-zone cells. The two-dimensional cal-

culations, referred to as "exact", treat the physically realistic square

lattice cell incorporating the reflective-boundary condition. The fuel

Q
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zone consists primarily of a homogenized mixture of highly enriched

uranium and aluminum with a radius of 3.29 cm. The moderator zone

consists primarily of water; moderator thicknesses of 0.9Z {Cell No. I)

and 1.84 cm {Cell No. II) were examined.

The cylindrical cell calculations were performed with the GAPLSN

code, whereas the Los Alamos DDK code was used for the two-dimensional

calculations. Both sets of calculations were performed in the S 6 approxi-

mation and included first order anisotropic scattering (P1). A constant

isotropic fission source was utilized in the fuel zone. (The effect on the

disadvantage factors of the fiat source approximation was shown to be

negligible by comparing the results with a multigroup calculation which

computed a realistic fission source distribution. ) The fuel zone was

approximated in the two-dimensional calculation by a fine mesh of jagged

boundaries which preserved the total area. Two energy groups were used -

the first covering the energy range from Z. 0Z to 14.9 MeV, the second

from 0. 067 to Z. 02 MeV.

The results of the calculations are given in Table 4. 1. The re-

flective-boundary condition grossly overestimates the disadvantage factor

in the high energy group. The agreement is considerably better in the low

energy group, although the white boundary condition still gives better re-

sults. Physically, the curvature artificially introduced by the WS approxi-

mation accentuates the reflection to the fuel zone of the forward-peaking

flux near the boundary. The white boundary condition has the effect of

"smearing" the angular flux near the boundary, and, as shown in Fig. 4. 1

eliminates the artificially high flux gradient near the boundary.

The effect of including high energy disadvantage factors in a calcu-

lation of the poisoned mockup reference core {22} is demonstrated in Table

4.2. The Fermi age leakage fraction, and multiplication factor were cal-

culated in three ways - without high energy disadvantage factors and with

high energy disadvantage factors calculated in the WS approximation using
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both white and reflective boundary conditions. The age, as calculated

by GAM, is defined in the following way:

Czo (E)n

T(E)n) = _00 (En) '

where:

E) 1q_nt( = _ _ znct (Z, E) dZ.

It is seen that the correct consideration of high energy disadvantage fac-

tors increases the Fermi age by more than 8%. The effect onkef f is

approximately I%. A calculation of kef fwhich utilizes the reflective-

boundary condition is in error by approximately 0.7%.

4.3. COMPUTATION OF k
0o

Once the disadvantage factors were obtained, the thermaland

fast spectra were recalculated, weighting the atom densities with the

disadvantage factors to reflect spatial self-shielding. Gross core leak-

age is taken int9 _ccount in the GAM-II calculation of the fast spectrum

through the overall core buckling which was obtained in the subsequent

multi-group diffusion calculation of kef f. This portion of the calculation,

then, depended upon an iterative procedure. The buckling was obtained

from the group-diff,_-= ion calculation as:

N

E (Leakage) i

B z_ = i= I
x N (4.Z)

EDpi
i=l
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where D.z is the diffusion coefficient for group i, _i is the integrated flux

in group i, and N is the total number of groups in the calculation. The

resonance calculation was initially performed in the constant source approx-

imation using the Nordheim integral technique (Z3) for the solution of the

energy-dependent integral equations. The details of the resonance treat-

ments are described in Section 4. II.

Broad-group fast and thermal cross sections, used in subsequent

multigroup-diffusion calculations, were averaged over the final GAM-II

and GATHER-II spectra, and were weighted by the disadvantage factors.

The infinite multiplication factor was then obtained, after an appropriate

normalization between the fast and thermal fluxes, from the relationship,

k = J (4.3)
QO

j _ajC_jAj

where _f is the macroscopic fission cross section, _a is the macroscopic

absorption cross section, _ is the scalar flux, _ is the number of neutrons

produced per fission.

4.4 TRANSPORT CROSS SECTION

4.4. 1 TRANSPORT CROSS SECTION IN THE P-1 APPROXIMATION

The energy dependent P-I equations may be written

= (r, E -'E)_(r, E ) + S(r, E)
o

(4.4)

l ;o 'X.lt '' ---V_0(r,E) (r,Eft(r, E) = dE E -'E)J(r,E') ,

(4.5)

Q
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where_is the scalar flux, J is the current, and is the total cross

section. The source term, S(r,E), includes neutrons produced by fission,

and is assumed to be isotropic in the laboratory system. The Legendre

expansion coefficients of the scattering kernel are given by

l

z / zst(r, E -_E) = ZTt dlzP4(_) ._(r, E -E, ;a) , (4.6)

where Pt(/._ ) is the _th order Legendre polynomial and_._ is the scatter-s

ing kernel.

The transport cross section, _._tr(r, E), is defined by manipulation

of Eq. (4.5). We have

. I V_(r, E) = (r,E)J-(r,E) - dE' (r,E -'E)3(r,E ) .
3 1

(4.7)

Itis assumed that the direction of the current is indep_i,dent of energy;

i.e., we can write

J(r, E) = K:J(r, E) , (4.8)

where J(r, E) is a scalar function of space and energy andS" is a unit vec-

tor denoting the d._.rectionof the c,arrent. Then Eq. (4.7) can be written

J-(r,E) = - I _g)(r,Z) , (4.9)

3-_t r(_',E)

where the transport cross section is defined by
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E) = (r, E) - dE;' (r, E -_E) J'r' E') (4. 10)
] J(r, E)

A spatially independent current spectrum, J{E), is generally obtained

and used in the integral on the right-hand side of Eq. {4. 10).

One frequently encounters an alternate definition of the transport

cross section

_tr (r- , E t --Es --E) = (r, E) - _ (r, E) , (4. 11)
0

i

where bt is given by

1

fl d_/_Es(r,E'-'E,b_)

........ (4.IZ)
_= 1 d_s(r, E,_.E' _)

Referring to Eq. (4.6), Eq. (4. 11) can be written:

Err(r, E) =Et(r,E)-_sl(r,E) (4.13)

This definition of the energy dependent transport cross section is an

artifice, and the relationship given by Eq. (4. 11) is strictly valid only

within the realm of monoenergetic P-I theory. However, when___

(r, E-'E) in Eq. (4. 10) is significant only in the energy range where
!

J(r, E )/J(r, E)__ 1, and if the energy degradation in scattering is insigni-

ficant, Eq. (4. 10) reduces to Eq. (4. 13). These assumptions, of course,

are synonymous with the limit of monoenergetic diffusion, and thus this

alternate definition of the transport cross section is only justifiable for

scattering from heavy elements, i
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The procedure for energy averaging of the transport cross section

within the realm of multigroup diffusion theory has formed the basis for

considerable controversy over the years. Pomraning(24}has discussed this

problem in some length. The point is that the averaging procedure de-

pends upon the stage at which the space-energy separation is performed.

If the space-energy separation is made after the energy-dependent P-1

equations are written down

_(r, E) --_(r)_(E), (4.14)

then a parallel average of the transport cross section over the spectrum

is appropriate

d Eq9(7,E)

Zt 1 (4. 15)
"_ rC)>i-- _IE I _(7,E)

_[_ (r,E)r

(This is equivalent to a series average of the transport cross section over

the spectrum of the current.) If, however, one begins by writing down the

energy dependent Boltzmann equation, and separating the angular flux

(r,_, E) = _(r, ¢_)q_(E), (4.16)

the current and flux spectra are identical. Using this approach, Pomran-

ing (z5) has arrived at a series average of the transport cross section

over the spectrum _ _ _
dE (r,E)q_(r,El

r

> = I (4.17)

1
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Generally energy dependent diffusion theory is preferred, and the parallel

average given by Eq. (4. 15) is applied.

4.4. Z TRANSPORT APPROXIMATION OF THE MULTIGROUP

B OLT Z MANN EQUATION

The energy dependent Boltzmann equation may be written

_. V_(r, E,_}) + E)_(r, E,_) = Ed_] (r, E-'E,O'_ )_(r,E _) ,

(4. 18)

where _(r, E, _) is the angular flux. The source is neglected for simpli-

city. The scattering kernel is generally expanded in Legendre coefficients,

resulting in the following equation

- - - - 1 (z¢+ i) E' (r,E-E)
I%" V_b(r, E, _) + (r, E)_(r, E, i_) = _ t=O t

fiS'p , _,• 1_._ r,E,n ) . (4. 191

The Legendre expansion coefficients are defined by Eq. (4.6). The expan-

sion is generally truncated so that all terms with n >IZ are set equal to zero.

In this way an isotropic and a first order anisotropic component of the

scattering kernel are retained.

Frequently computer memory size limitations allow only the iso-

tropic scattering component to be retained in a numerical quadrature of

Eq. (4. 19). Since anisotropic scattering plays a significant role in sys-

tems containing light elements, it is desirable when making this approxi-

mation to somehow account for anisotro'_ic sca£tering in the cross sections.

We refer to such a scheme as the transport approximation of the Boltzmann

equation.

'4_ q ,
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Rakavy and Yeivin {Z6) first demonstrated this transport approxi-

mation by subtracting an arbitrary function, X(r, E,_), from both sides

of Eq. (4.18). Defining

a(r, E, _) =_._(r, E) - X(r, E,r2)
t

and

_(_-,E-E,_-n ) (r,E-E,n.n ) - X(r, E,_)6(E-E )6((n.a )-l),

(4.ZO)

where 6 is the Dirac delta function, /9 is expanded in a Legendre expan-

sion through the second term

t=l

..... l (z,_+ l) E _:(r,E 'E)
n. V_(r, E,D.) + (_(r,E,n)_(r, E,n) : _-_ t:0

(_ .n )_(r, E ,_q ) . (4.21)

The transport approximation consists of setting the term with t =1 on the

right-hand side of Eq. (4.21) equal to zero. Doing so, the arbitrary

function, X, is evaluated

SO J° !

(_,E'-'E)n" J (r,E )

X(r, E, h) : dE' )-_%1 n. J (r,E)

: _'_%(r, E) - Y].tr(r, E) , (4.2Z)
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using the definition of _. in Eq. (4. I0) and assuming that the direction
r

of the current is independent of the energy. Thus the transport approxi-

mation of the energy dependent Boltzmann equation becomes

-- -- 1 dE _s (r,E-'E)
_q"V _(r, E,_) + __tr(r,E)_b(r,E,_) = 4"-_ 0

+ [_-]%r(r,E)-_-_%([,E)] 6(E-E')cp(r,E') (4.23)

The multigroup scheme is derived by integrating Eq. (4.23) over

energy within group i, where the group angular flux is defined as

E°

/1_pi(r,_) = dE _(r-',E, _) . (4.Z4)

El- 1

" At this stage, the angular flux is assumed separable within each energy

group

[_#(r,E, n) ]i = _#i(r'_)cPi(E) ' (4.Z5)

and accordingly the scalar flux becomes

lop(r,E)]i = fd_(r, E,_) = 4)i(r)_Pi(E). (4.Z6)
i

th
Integrating Eq. (4. Z3) over energy in the i group, and using the separ-

ability assumption, we arrive at the multigroup scheme for the transport
%

approximation of the Boltzmann equation:

1

t
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L I j-_in'V_bi(r'_) + r(r)_i(r'_) = 4--_Ij=1 So

6 i i 1 - .Z7)ij[_ r (r)-Zt (r)] 4_j(r), (4

where 6.. is the Kronecker delta. Equation (4. P7) differs from the simple
xj

isotropic scattering approximation in two ways: 1) the group averaged

transport cross section appears in place of the total cross section on the

left-hand side of the equation, and Z) the diagonal term of the P0 scatter-

ing matrix on the right-hand side of the equation contains the additional

term in the straight brackets.

The group cross sections appearing in Eq. (4.27) are defined in

the following way

j" dZZt. -tr(r,E)g)ilE)

El - Ei- 1
t,tr(r) = E. (4.28)

l dE_ilE)
E
"i-I

and

E. E.

dE dE (r),E-'E)_jlE )• 0

)-'i_ Ei- I E]. I(r)= E. (4.zg)
S

o /J dZ'%( 'E)E.
j-I
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We see that all of the cross sections appearing in Eq. (4.27) are series

averages over the spectrum of the flux. The separability approximation

of Eq. (4.25) is implicit in obtaining this result, but this assumption is

necessary to arrive at multigroup transport theory, since the neutron

spectrum used for averaging is generally obtained from a zero dimensional

spectrum calculation.

4.5 NUMERICAL EXAMPLE

Three cell calculations, using the GAPLSN code in the S 4 approxi-

mation, have been performed to obtain thermal disadvantage factors for

a unit cell closely resembling that of the mockup reference cell. (2Z) The

three cell calculations consist of the following approximations to the

Boltzmann equation:

1. A P0 expansion of the scattering kernel; i. e., only the
first term of the expansion on the right-hand side of

Eq. (4. 19) is retained.

Z. A PI expansion of the scattering kernel; i. e., the first
two terms of the expansion on the right-hand side of Eq.
(4. 19) are retained.

3. The transport approximation discussed in Section 4.4.2

i.e., Eq. (4. Z7) is used.

The disadvantage factors obtained for each of the above three

approximations are listed in Table 4. 3. The calculations were per-

formed with five thermal groups, and results for the five principal iso-

topes present in the cell are tabulated. It is seen that the maximum de-

viation between the PI results and the transport approximation is 3%,

whereas several of the P0 results differ by as much as 7% from PI

calculation.

Q
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4.6 COMPUTATION OF kef f

The effective multiplication factor was computed using multigroup

diffusion theory. Most of the multigroup diffusion calculations were per-

formed by a synthesis of the two-dimensional assembly geometry using a

one-dimensional buckling-iteration procedure with the GAZE-II code. (27)

The buckling iteration consists of a radial-axial-radial scheme, which

has been shown to converge kef f for these cores to an error in k of less

than 10 .4 . At each step of the procedure, bucklings were computed from

Eq. 4. Z to use as transverse bucklings in the subsequent calculations.

Two-dimensional multigroup diffusion calculations were performed using

the GAMBLE-IV code. (Z8)

The void content of the fuel element gave rise to some concern that

an axial streaming problem might exist which is not properly treated by

the procedure outlined above. A Monte Carlo analysis of the high energy

leakage from the reference mockup core (22J""was made and good agreement

was obtained between it and the leakage as calculated by multigroup dif-

fusian theory.
|

4.7 MONTE CARLO ANALYSIS OF HIGH ENERGY LEAKAGE

4.7. I PURPOSE OF MONTE CARLO CALCULATIONS

A Monte Carlo analysis of the high energy leakage from the mock-

up core was made. The purpose was to investigate the validity of the re-

sults obtained using the more conventional methods.

4.7. Z DESCRIPTION OF THE MONTE CARLO CODE

A slightly modified version of FMC-N, developed by GE-ANP (zg)

was used on the General Atomic IBM-7044 computer. This code allows

explicit representation of any geometry and source, as well as accounting

for inelastic scattering, elastic scattering, absorption, and fission. A

summary of the major features of the code and its data requirements

follow s:
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4.7.2. 1 Geometry Description

A hexagonal cell containing one fuel element with the surrounding

water moderator was exactly represented. The fuel element configura-

tion was that used in the Hazards Analysis with the tungsten inside the fuel

rings and the U-238 ring outside the radiation shield. It is shown in Fig.

4. Z. A bottom beryllium reflector and a top water reflector were ex-

actly represented.

4.7. Z.2 Source Description

The code requires probability tables for the source _,_ separable

functions of radius, height, and energy. Source neutron parameters are

then selected randomly from the tables with an isotropic angular distri-

bution. In this analysis the radial distribution was represented by the

probability table shown in Fig. 4.3. The figure is a graph of the prob-

ability table as a function of radius and was prepared from the radial

distribution of the source obtained from a transport cell calculation.

The axial source distribution was obtained from a GAZE axial

calculation. As shown in Fig. 4.4 it was divided into seven segments,

each segment being used as a source for a separate problem. The re-

sults of the seven problems, when properly weighted and combined are

equivalent to those obtained from a single complete source problem but

require much less running time.

The energy distribution of the source was taken from the thermal

fission spectrum of U-235.

4.7.2.3 Energy Group Bounds

Although the code uses explicit neutron energies in following a

history, it is convenient to represent input and output data averaged over

a group structure. The group structure used was that which was conven-

ient to GAM averaged cross sections, i.e., groups of multiples of O. 1

lethargy units in width. Microscopic cross sections, angular distribution

",_i Q
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Fig. 4.2--Mockup fuel element and hexagonal cell
used in Monte Carlo analysis
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probability tables, and fission spectrums were read into the code as

values over the group structure of Table 4.4.

The 26th group extends to zero energy and was merely used to

terminate histories. Thus the problemwas effectively cut off for ener-

below 86.5 keV.

Table 4.4

ENERGY BOUNDS FOR INPUT DATA GROUP STRUCTURE

Group Top Energy (MeV)

1 14.9Z
2 12.21

3 10. O0

4 8. 187

5 6.703

6 5. 488

7 4. 493

8 3. 679

9 3. OlZ
10 Z. 466

11 Z. 019

12 i. 653

13 I.353

14 I. I08

15 O.907
16 O.743

17 O.608

18 O.498

19 0. 408
20 O.334

21 O.273

22 O. 224

23 0. 183

24 O. 150

25 O. 123

Z6 O. 0865
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4.7.2.4 Fission and Total Cross Sections

The microscopic fission and total cross sections were obtained

from the GAM-II program. The entries on these GAM-II :ata tapes are

averaged with a I/E flux over each 0. 1 lethargy interval and thus deviate

from a.flat average over such an interval by 4-5%, This is a very small

error in the problem. The entries for each 0. 1 lethargy interval were

averaged to form values for the 0.2 lethargy intervals used in the Monte

Carlo analysis.

Since n, 2n processes cannot be handled explicitly in FMC-N,

they were considered to be a fission process with a yield of Z. 0 neutrons/

fission. The code stores fission events untilallthe source neutrons are

used up and then returns to process the new neutrons originating from

fast fission and, thus, n, 2n as w_ll. The fast fission spectrum tables

were modified to take into account the differing spectrum resulting from

n, Zn processes.

4.7. Z. 5 Inelastic Scatterin_ Cross Sections

The inelastic cross sections for each nuclide were obtained

from the GAM-II data tapes using the same weighting as in the total

cross sections. The code requires the energy of the inelastically scat-

tered neutron to be expressed in terms of a probability table. These

tables were prepared for each nuclide by making use of the inelastic

transfer arrays available for the GAM-II code. The probability of

emission of a neutron in group j after an inelastic event in group i is

simply

a

P =. i'_) (4.30)

j-1  i-j
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Tables can thus be constructed for each nuclide which give the probability

of emission in any lower energy group following an inelastic event. These

tables were prepared using a smalldata handling code, INELAS, written

for this problem.

The angular distribution of the emitted neutron after an elastic

event can also be controlled with probability tables. In this analysis,

however, all inelastic events were assumed to result in an isotropically

scattered neutron.

4.7. Z. 6 Elastically Scattered Cross Sections

The elastic scattering cross sections were obtained from the

GAM-II data tapes. For this type of event the code also requires a

probability table to find the cosine of the polar scattering angle. The

correction to lab coordinates is made after the polar scattering angle

is chosen, and the energy of the scattered neutron is then calculated.

The construction of these probability tables expressing the cosine of the

polar scattering angles was based on the sets of Legendre coefficients

, available at General Atomic for each of the nuclides. The elastic scat-

tering cross section a (E,/z) has been previously analyzed as
S

6

a(E,.) %(E) Es - 4_ (Zt + I) ft(E)Pt(/_) , (4.31)
&=0

where _ (_,/_) is the scattering cross section per unit solid angle in thes

center of mass system for a neutron of energy E scattered through an
-1

angular deflection given by cos /z. Since the Legendre coefficients

fL(E), are conveniently available at General Atomic on cards for each

nuclide, a data handling code, CUMTAB, was written to process the

cards and make up probability tables. The probability of a neutron of

energy E having a polar scattering angle whose cosine lies between/z,

and/z 2 may be written as
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l z as(E'/_)d_

P(E'_I'_Z) = I (4.32)

f-i%(E,

4.7. 3 RESULTS OF ANALYSIS

4.7, 3. 1 Number of Histories

The accuracy of a Monte Carlo analysis is based not only on the

quality of the input data but also on the number of neutron histories. One

thousand neutrons were used in each of the seven source regions. Each

1000 neutrons required about 0. 16 hour on the computer.

4.7.3.2 Calculation by other Methods

The results were compared to those obtained using the methods

of Section 4. 1. These methods may be summarized as follows:

a. A one-dimensional S16 cell calcu/ation using the P1
" approximation was made with 15 groups between

14.9 MeV and 67.0 keV. The spatia! source descrip-

tion was from a thermal neutron transport cell calcu-
lation.

b. Disadvantage factors for each nuclide from the high

energy transport calcu/ation were used in a zero

dimensional code, GAM-II, for a spectrum calcula-

tion using over 50 groups in this energy range. Dif-

fusion coefficients were obtained using the formula

as I(E,-.E)J(E')dE'

atr(E) = (_T(E) " _ J(E) (4.33)

c. The leakage was then calculated for a homogenized core
using the GAZE-II code.
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4.7.3.3 Comparison of Results

The number of neutrons escaping from the assembly is shown in

Table 4.5.

Table 4.5

MONTE CARLO ESTIMATE OF LEAKAGE FROM

MOCKUP CORE (!4.9 MeV-87. 5 keV)

Source Integrated Leakage/ Leakage/

Re6ion Source 1000 Neutrons Source Neutron

1 0.0182 205 0 0.00373

Z 0.0497 89 1 0.00443

3 0.1Z5Z 33 5 0.00419

4 0.3336 2 93 0.00098
5 0.3338 7 53 0.00251

6 0. I168 45 3 0.00529

7 0.0227 120 6 0.00274

Sum 1.0000 0.02387

As shown in Table 4.5, each source region has roughly equal weight in
m

leakage, as desired from a statistical viewpoint. The Monte Carlo axial

leakage from the assembly shows excellent agreement to the value of

0. 02381 found from the comparable GAZE diffusion calculation.

Core leakage into the reflector is a more important quantity from

the standpoint of one-dimensional buckling iteration calculations. A

direct comparison between the results from GAZE and FMC-N is possible

in the Be bottom reflector. The results are shown in Table 4.6.

Table 4.6

Cod_...._e Leaka_ e / Sour c e Neutron

FMC-N 0. 0294

GAZE 0.0Z40
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The agreement is good, and indicates that the methods outlined in

Section 4. 1 are adequate for the calculation of high energy leakage in these

cores.

It might be expected that the high energy spatial distribution of the

flux would similarly show good correspondence between the FMC-N and

transport cell calculations. The volume averaged flux in various regions

of the cell is compared for the two methods in Table 4.7. The Monte Carlo

results show slightly less flux buildup in the center of the cell than the

transport results. This may be caused by the difference in the axial di-

mens ion.

Tab-e 4.7

COMPARISON OF VOLUME AV£:i-, .-,IED FLUX IN

VARIOUS CELL REGIONS (14.9 MeV-87.5 keV)

GAPLSN Transport FMC-N Monte Carlo

Fuel Ring No. 1 I.495 1.470

(innermost)

Fuel Ring No. Z I.499 I.451
Fuel Ring No. 3 1.488 1.455

Fuel Ring No. 4 1.454 1.407

Fuel Ring No. 5 1.386 1.384

U z38 Ring I.316 I.Z35
Moderator I.000 I.000

The transport cell calculation implies an infinite length cell. Some dif-

ference must occur in the U Z38 ring also since it occupied a slightly dif-

ferent position closer to the moderator in the Monte Carlo calculation.

Nevertheless the correspondence is good between the two calculations.
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High energy disadvantage factors were calculated for a particular

energy group from the FMC-N results for comparison to those obtained

from the transport calculation. To eliminate statisticalfluctuation, two

FMC-N groups were averaged to form a group from 2.466 MeV to I.653

MeV. The disadvantage factor for each material was then obtained from

Formula 4. I. The results are shown in Table 4.8 compared to a com-

parable group from a transport calculation. The largest discrepancy is

in the U 238 and is probably caused by the different position in the two

calculations. In general, the correspondence is good, indicating the val-

idityof the high energy disadvantage factor ca!culational method.

Table 4.8

COMPARISON OF DISADVANTAGE FACTORS

GAPLSN FMC- N

Nuclide (2.02-I 83 MeV) (2.466=1.653 MeV)

H and O 0 749 0.799

A1 l 149 I. 159

W 1 222 1. 183

U 235 1 285 1.252

U z38 1 109 0.99Z

4. .4 CONCLUSIONS

The Monte Carlo analysis showed that the methods previously

desci'ibed are adequate for the calculation of high energy leakage in

these cores. The Monte Carlo results also showed good agreement with

the one-dimensional transport calculation of the fast flux distribution in

a cell and the high energy disadvantage factors.
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4.8 ONE-DIMENSIONAL CALCULATIONS

The one-dimensional cell calculations were performed with the

OAPLSN code. The geometry of the unit cell, in a cross sectional cut

through the fueled region, was represented explicitlyin cylindrical geo-

metry. The geometry of the fuel channel is given in Table 4.9. The in-

fluence of the cadmium poison tubes was represented in these calculations

by homogenizing the cadmium throughout the entire moderator region of

the cell. The mesh spacing, 6, was chosen to satisfy the following con-

dition for most of the problems:

6 --<)_t _min '
rain

where )_t is the shortest mean free path of all groups in the problem,
rain

and bLmi n is the smallest value of the average cosine used in the S n

approximation.

4. 9 TWO-DIMENSIONAL CALCULATIONS

The two-dimensional cell calculations were performed with the

DDF code, a FORTRAN l:_nguage modification of the Los Alamos two-

dimensional S code, DDK. Two-dimensional r-z calculations were per-n

formed to explicitly represent the 1/8 in. gap between fuel stages in the

calculation of the thermal disadvantage factors. The details of the cal-

culation are identical to those described above for the one-dimensional

cell calculations, with two exceptions. To accommodate t_. _ problem

within the memory block of the computer, the mesh spacing criterion

was relaxed somewhat, and only the thermal portion of the fine structure

calculation was performed, with a slowing down source specified in the

moderator.
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Table 4.9

DIMENSIONS OF THE MOCKUP UNIT CELL

Inside Radius (cm) Outside Radius (cm)

A1 center post 0. 6350 0. 9690

Tungsten 0. 9843 0. 9970
Fuel A 0. 9970 1. 1036

A1 tube 1. 2763 1. 3652

Tungsten 1. 3805 1. 3932
Fuel B 1. 393Z 1. 4999

A1 tube 1. 6726 1. 7615

Tungsten 1. 7767 1. 7894
Fuel C 1. 7894 1. 8961

A1 tube Z. 0688 Z. 1577

Tungsten 2. 1730 2. 1857
Fuel D Z. 1857 Z. 2923

, A1 tube 2. 4651 Z. 5540

Tungsten 2,569Z Z. 5819
Fuel E 2. 5819 Z. 6886

Tungsten 2,7064 2.7140

U 238 ring 2.7140 2,.8156

Pressure tube 3.0886 3.2537

Moderator 3. 2537 4.2-088
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In the two-dimensional calculation of thermal cell disadvantage

factors, a different scheme for taking into account the influence of the

cadmium poison on the thermal fine structure was used. This scheme

consisted of representin_ the cadmium as a thin ring at the outer boundary

of the cell and thus preserving the actual volume and nuclear density of

the cadmium solution belonging to the unit cell.

4. 10 CALCULATION OF THE CADMIUM THERMAL DISADVANTAGE

FACTORS

The methods used for calculating the thermal disadvantage fac-

tors of the cadmium poison represented a departure from the methods

used for the other disadvantage fact3:.. _ _.he cell. Two methods have

been used; they are described in detail below.

4. 10. 1 ONE-DIMENSIONAL TUBE-CENTERED C/_LCUI._6,TION

The first method, referred to as the tube-centered calculation,

is an attempt to represent the actual poison-tube-centered geometry,

sketched in Fig. 4.5a, in one dimension. The one-dimensional approxi-

mation to this geometry, sketched in Fig. 4.5b, preserves the total

amount of material and volume in the moderator and the fuel, both re-

gions represented as annular rings surrounding the poison tube. Cad-

mium disadvantage factors were then obtained from GAPLSN calculations

in the PIS4 approximation.

The cadmmm di.,,advantage factors obtained in the one-dimensional

approximation described above are corrected for two-dimensional effects

by the following procedure. The cadmium disadvantage factors in the

tube-centered geometry of Fig. 4.5b were first computed by diffusion

theory using the GAZE code. The actual two-dimensional jeometry was

then represented by a _ymmetric slice of the cell shown in Fig. 4.6.

The cadmium disadvantage factors were calculated ":n this X-Y approxima-

tion to the _-tual geometry with the GAMBLE diffusion theory code. The

L_l •
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FUEL ELEMENTMODERATOR
POISON TUBE WATER

Fig. 4.5a--Actual geometry of poison tube in lattice

EL ELEMENTPOISON TUBE MODERATOR
WATER

Fig. 4.5b--One-dimensional approximation for
disadvantage factorcalculation

Q
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ratio of the disadvantage factors computed by two-dimensional diffusion

theory to those obtained from one-dimensional diffusion theory were used

as a correction to the one-dimensional transport disadvantage factors.

Thus the final group-dependent cadmium disadvantage factors obtained

in the tube-centered approximation were given by:

i

, (,)(g2o)1o= : (4. 34)
1

gCd Tr. g 1-D
Diff.

In order to appreciate the magnitude of the two-dimensional

correction, the average thermal group disadvantage factor before correc-

tion, gl_DT r, and the corrected average thermal group disadvantage fac-

tor, gGd' are plotted as a function of cadmium concentration in Fig. 4.7.

The results are shown for the 3.0-in. core. The average thermal group

disadvantage factor was defined as:

E(Y i_Oigi
-- i
g - , (4.35)

i

where a. is the cadmium microscopic absor_,tion cross section for group
1 i

i, cpi is the total cell flux in group i, and g is the group i disadvantage

factor. The summation is over all thermal groups.

4. 10. Z TWO-DIMENSION.' L TRANSPOB r CALCULATION

The second _nethod for computing che cadmium disadvantage fac..

tors was a two-dimensional transport calculation, using the S code,
n
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Z DXY. (30) The unit cell considered, shown in Fig. 4.8 was a symmetric

portion of the hexagonal array. The curved boundaries of the fuel channel

and poison tube, shown on the right side of the figure, were represented

in X-Y geometry throughout the entire cell by the jagged boundaries drawn

on the left side of the figure. The material comprising the inner four

fuel-W rings in the fuel element was homogenized into one central re-

gion. The material comprising ring E, including the uranium 238, tung-

sten and fuel was homogenized into an outer ring, and the void, pressure

tube, and cadmium solution were explicitly represented. This homogen-

ization procedure has been shown in separate calculations to give good

results for the over-all flux distribution. Atom densities in the cell were

were adjusted slightly when necessary to preserve the correct material

loadings of each region. The calculations were were made in the S 4

approximation and used the P0 transport approximation for the scattering

cross sections (see Section 4.4). The thermal calc .?ttions were made

using a slowing-down source in the moderator.

In order to correct for the slight error associated with the trans-

port approximation, additional calculations were performed in the one-

dimensional tube-centered cell configuration of Fig. 4.5b using both the

P0-transport and the Pl approximations for the scattering cross sections.

The two-dimensional results were multiplied by the ratio of the one-

dimensional Pl disadvantage factors to the one-dimensional P0-transport

disadvantage factors. Thus the final group-dependent cadmium disadvan-

tage factors obtained by the two-dimensional transport calculations are:

(g_l '\
i ( i ) (4.36)

gCd = gZ-D p0\gp0 /
I-D
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The correction for the transport approximation was less than 2% for

all groups and all cadmium concentrations studied.

4. II TREATMENT OF RESONANCE ABSORPTION

_. Ii. I CONVENTIONAL TREATMENT USING GAM-II

A comprehensive discussion of the conventional resonance absorp-

tion treatment as applied in the GAM-II code has been reported by

Nordheim.(23) Basically, the moderator flux is assumed to be l/E,

and the following integral equation is solved for the absorber flux:

(1 - Pc)ZtANA /°_A dE' OpalE (E') + (4. 371r : Pc 1 • '1%a E '
E

where cPA is the absorber flux, Eta is the total macroscopic absorber

is the microscopic scattering cross section of the

cross section, %A (A-I_ 2
absorber, N A is the absorber atom density, E is the energy, a = k-_-_]

and P is the collision probability of the absorber lump. The absorberc

flux was obtained by Nordheim's integral method, a numerical quadra-

ture of Eq. 4.37, in which each individual resonance is broken up into

a fine mesh of energy points. Once the absorber flux is obtained, the

effective GAM cross section for nuclide nin fine-yvoup k is calculated

from the following expression:

k- I dugn(u)_P.A(u)

n %
= , (4.38)

%enk _ _k
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The resonance line shapes including Doppler broadening, the resonance

wing corrections, and the resonance treatment in the unresolved region

are discussed in reference 12.

The collision probabilities, P , were obtained by a cylinder equiva-c

lence principle. The multiple-body concentric ring structure shown in

Fig. 4.9 can be considered as a non-reentrant body in the absence of

material between absorber rings. Then the chord length, L(_,), is defined

as the sum of individual paths through the material in the rings. The

chord distribution 131") is defined by:

dA f _._dn

_'= _(L) (4. S9)
0 (L)d 4. = ff _

_. _d_

where the numerator is integrated over all angles, _(L), for a fixed chord

length, _.. The denominator is integrated over all angles, and is equal to

?rA, where A is tho outside area of the outer ring. Then the mean chord

length, _, is given by:

_-= Lcp(L)dL- -fdAfL5. ad . (4.40)

As is the case for a solid cylinder, the double integral yields a value of

4_'V, and the mean chord length for the ring structure becomes:

_- = 4_VV (4.41)A
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Fig. 4.9---Configu.ration fer mean-chord length derivation
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This is the usual expression for the mean chord length; however, for the

multiple ring structure V is the total volume of the rings and A is the

circumferential area of the outer ring.

Once the mean chord length has been obtained, the flat source

approximation is assumed, in which case the collision probabilities are

obtained in Case, de Hoffman, and Placzek (31) for the equivalent cylinder.
m

That is, P = P (_a), where a = £/Z. The collision probabilities were
c c

corrected for the interaction between cells by the expression introduced

by Nordheim: (23)

,:: Po(l - c)

Po - I - (I -_Po)C ' (4.4z)

where P0 is the escape probability (P0 = 1 - Pc) , P0 is the escape

probability corrected for the interaction between cells, and C is the

Dancoff-Ginzburg factor. (32) The values for the Dancoff-Ginzburg fac-

tor, C, are obtained in ANL-5800 (33) for a homogeneous mixture of

materials exterior to the outside absorber ring.

4. 11.2 TREATMENT OF THE INTERSTITIAL CELLULAR MATERIAL

In theory, the material in the interstices between absorber rings

can be handled as an additional scattering region, and the resonance treat-

ment may be applied within the framework of the constant source approxi-
1

marion. Assuming, as usual, a _- flux in the moderator, the collision

density in each region is given by:
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E/%

va t a =Pa- Ava s (E'I
1 - a A d A

E

E/%

PI_.AVI /'dE' _oi(E')Ysi(E,)

+ l_al J E' + PA -_ MVAEtA (4.43)
E E

E/fi E/%

Vl_ti_0I = PI_.IVI fdE' ¢pi(E')_si(E') + PA_.IVA _d__' _0A(E')_sA(E' )
l__i JE' 1-_A

E E

P
+ I-" MVIZI (4.44)

E

where the subscript A refers to the absorber, I refers to the interstitial

region, and M refers to the moderator. The nomenclature is conven-

tional, _0 is the flux, _the macroscopic cross section (subscript s ior

scattering and t for total), V is the volume, E is the energy, ff _A+I]
and P.. is the probability that a neutron born in region i will suffer its

first collision in region j.

The system of equations (4.43) and (4.44) are cumbersome and

have not been programmed for the computer. The main drawback lies

in the requirement for two independent sets of collision probabilities,

PA"j' which must be derived from separate fixed source calculations.

Furthermore, the complexity of the system obviates the utility of the

usual reciprocity relationships, making it necessary to utilize several

separ_ colhsion probabil._.ty tables in the solution of Eqs. (4.43) and (4.4_).

4
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Two approximation_ are feasible which permit the use ol existing

numerical techniques and a single set of collision probability tables. The

first involves the assumption that the flux in the interstitial region, as well

as that in the moderator, is 1/E. Introducing this approximation, Eqs.

(4.43) and (4.44) reduce to the single equation:

E/_

P'A-AVA fdE' _°A(E')_sA(E') + (1-P'A-'A)"'AZtA (4.45)
VAZt/A- I-0_A JE-'-7- E

E

In Eq. (4.45) the collision probability, P'A-'A' is derived from

a single transport calculation in which the interstitial material is explicitly

represented by its potential scattering cross section. (Any resonance

structure of the interstitial material, if it exists, is neglected and treated

separately as a resonance interference phenomenon. )

A second limiting case is that for which the flux in the interstitial

region i, roughly equal to the flux in the absorber. If such is the case,

the effect of the interstitial material may be approximated by homogenizing

the interstitial material into the absorber rings, resulting in the equation

E/a A

VA_t/A = PA-'AVA j E _A (E)_s A

E

ERx I

vl/vaf } VA_tA+ i_ dlE-'-_E'¢0A(E')I_sI(E') + (I'PA-'A) 14.461E
E
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The collision probability, PA-A' in Eq. (4.46) is the conventional

collision probability for the absorber rings alone. PA__A may be obtained

from flatsource transport calcul3tions, or may be quite accurately

approximated by the cylinder equivalence (see Section 4.4. l).

The best apprcximation for estimatzng the effect of the interstitial

materia] was chosen in the following manner. The mockup tungsten ring

configuration was explicitlyrepresented in a GAPLSN cell calculation.

The aluminum and fuel rings were homogenized into the interstices be-

tween the tungsten rings in their proper proportions, yielding the ccn-
18Z

figuration sketched in Fig. 4. I0. The W resonance at 4. 15 eV was

selected for the "exact" calculation. ._\45-group structure between Z. 38

eV and 8. 315 eV was constructed, with group-averaged elastic transfer

coefficients calculated from the equation

E. E.

ai'j: 1 L E (E') (447)
S

n Ei_TE i E' 1 - 0_n
E. E.

th
for the n nuclide. A I/E slowing-down source in the cell materials a_

well as the moderator was calculated from the following relationship:

E. E/a

f1-1fn n,)
S. : dE dE' (E (4.48)

i E---7- s
n E' (l-(x)

E. 8. 315 eV
1

The GAPLSN calculation was performed in the S 8 approximation.

The results of the GAPLSN calculations are compared wi'h the L'e-

sults obtained by solving Eqs. (4.45) and (4.46) in Table 4.10. The

t
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INTERSTITIAL
MATERIAL

TUNGSTEN
RINGS

Fig. 4. 10--Multiple body annular ring configuration

]

i
i
,, _L

1966016284-202



4-47

GAROL (34) code was used to solve the equations and by Nordheim's in-

tegral method. Figure 4. II is a histogram of the spectra obtained from

the GAPLSN calculation. The continuous line was obtained from a 500-

point GAROL calculation.

Table 4, 10

EFFECTIVE ABSORPTION CROSS SECTION OF

18Z
W FROM 2_. 38 TO 8, 32 eV

cr (barns)
a

W ithout Inchding
Interstitial Interstitial Relative

Method Mater ial Mate r ial Effect

I/E Flux in Interstitial

Material (Eq. 4.45) 44, 39 49.22 +10.9%

Homogenization of
Interstitial Material

(Eq. 4.46) 44.39 46. 18 + 4.0%

45-Group GAPLSN 43.80 45.91 + 4.8%

As seen in Table 4. 10, the assumption of I/E flux in the inter-

stitial material provides an overestimate of the effect. The departure

from 1/E is clearly shown in Fig. 4. 11, where it is seen that the flux

in the interstitial material is actually depressed slightly below the flux

in the absorbing rings. On the other hand, the homogenization proce-

dure appears to provide a good estimate of the effect. This could be

anticipated from the spectrum of the interstitial material flux, which is

roughly equivalent to the flux in the absorbing tungsten rings.

A radial flux plot for two energy groups in an earlier 40-group

GAPLSN calculation is given in Fig. 4. 12. An explanation for the de-

pression in the spatially integrated interstitial material flux is afforded

by this figure. It is seen that despite some spatial flux recovery in the

interstitial material, the strong rise in the outer two tungsten rings com-

pensates to give a higher integrated flux in the rings.
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It should be pointed out that only the interstitial aluminum exerts

an influence in the resonance calculation. This was concluded after per-
182

forming GAROL W calculations with and without interstitial uranium

and background tungsten (the potential scattering contribution of W 183,

W184 and W 186) No significant change was observed in the calculated9

absorption cross section. The same held true for the "exact" GAPLSN

calculation; the effect of including interstitial uranium was insignificant.

In the fuel element, several nuclides are present in the inter-

stices between the absorbing rings. For the tungsten resonance treat-

ment, the fuel rings and aluminum tubes were considered as interstitial

material, and tungsten itself is included in the U 238 ring resonance

treatment. These materials essentially act as isotrcpic scattering sources

to the resonance absorbers, thus effectively increasing the surface area

and raising the resonance integral.

The effect of the interstitial material was taken into account in

the resonance treatment by homogenizing the interstitial aluminum into

the absorber rings. The effect of other interstitial nuclides was negli-

gible. When including interstitial aluminum in the resonance calculation,

Eq. 4. 37 becomes:

I NA fL.E/aA
•_tA_A = Pc 1 :_A _" (PA(E'_sA(E')

/r_I+ (VI/VA)NI72_ii dE'y_7__A(E')_sI(E') (4.49)
E

-Pc)Z:t
+ A ,

E

where the subscript I denotes the interstitial aluminum.
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4. II. 3 RESONANCE INTERFERENCE

Since several resonance absorbing nuclides are present in the

fuel element the effects of interference between different nuclides had

to be considered. The four isotopes of tungsten, in their natural abun-

dances, comprise the tungsten rings. Uranium 238 is present to a small

extent in the fuel rings, in aJ.'.itionto comprising the depleted uranium

ring, which is completely separated spatially from the tungsten rings.

The GAM resonance treatment, which is described in r_rt in Section

4.4. l, treats each resonance of each nuclide separately. In other words,

the GAM calculation entirely neglects any overlap between resonances of

two different nuclides as well as interference between resonances of the

same nuclide.

Overlap was treated using a more refined resonance calculation

with the GAROL code. (34) The GAROL code allows several nuclides and

a!l resonances in the region comprising the absorber lump to be treated

simultaneously. This is accomplished by subdividing the energy region

under consideration into a fine mesh and calculating cross sections at

the points comprising this mesh from the individual resonance parameters.

Then, for a I/E flux in the moderator, the following equation is solved

for the flux in the absorber lump:

M _/_.

i_l Ni [ I dE'
=Pc i-% (z'l"-- 1

(1 - Pc)T.tA

+ E (4.50)
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where the summation is performed over all resonance nuclides com-

prising the absorber lump. Since this equation is solvea over the entire

energy region of interest in the resonance calculation, interference be-

tween neighboring resonances of the same nuclide is explicitly included.

Although the Uz38 ring is spatially distinct from the tungsten ring struc-

ture the U Z38 was homogenized into the absorber region, i

4. 11.4 U z35 RESONANCE CALCULATION !

The inadequacy associated with the conventional GAM self-

shielding treatment for U Z35, where an attempt is m a_de'to fit_,,._,"

the resonance cross sections with single-level Breit-Wigner parameters,
(35)

has been pointed out by Stevens and Joanou. The core calculations

which use the conventional GAM treatment utilizeU Z35 epitherrnal cross

sections in the infinitedilution limit in the fine groups. The GAROL code,

uses pointwise cross section data on a fine mesh basis. The resonance

self-shieldJ;i_calcJation for U z35 using the GAROL code, therefore, is

in principle no more difficultthan calculations involving resonances which

are accurately represented by single-level parameters.

Self-shielding calculations of U Z35 in the fuel rings were carried

out in the energy range 2.38 to 961 eV. GAROL fine mesh cross section

values were obtained by linear interpolation from the pointwise cross

section data given in Refe1_nce (36). The spatial treatment was based

upon the cylindrical equivalence principle previously discussed.

4, 1 I, 5 TWO-REGION RESONANCE CALCULATION

The resonance treatment discussed until now employed the I/E

approximation in the moderator region of the cell. This simplification

permits, in essence, a single absorber region calculation represented
Y

by a single integral equation for the flux in the lump. The GAROL code

!:',_ provides for an explicit treatment of the two-region cell, by solving the

following coupled set of integral equations:

%,

%
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E/a.

VA_tA_A = PA-" AVA l -aij eAlE')asi(E')
i=l E

E/O_.

+ PM-'AVM I - _j -E-7"_0M(E')° s (E') (4.Sl)
j=l J

F,/a. !
-- _ 0M(E')%.(E')

j=l J

}

1 dE'

+ PA-'MVA 1 - (_i -ET-_0A(E')as'(E')x' (4.5Z)
i=l E

where the subscript A denotes the absorber region and M the moderator

region of the cell. The sum over i denotes all materials in the absorbing

lump and that over j all materials in the moderator region. The collision

probability, Pa-'b' is de,ined as the probability that a neutron born in

region a will suffer its first collision in region b.

The explicit treatment of the moderator region makes it possible to re-

lax the I/E approximation in obtaining the fine-group effective cell cross

sections. Thus Eq. 4.38 is replaced by the more correct expression:

.Uk.l

j °(V 1 + V z) duo (U)_A(U)

-_ %
= (4.53)

cenk _.k-, %-l

VII dUCPA(Ul + VZ/ dUC_M(U)

h %
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for the effective cell cross section of absorbing nuclide n in fine group k.

Consideration of the proper flux-volume weighting of absorber nuclides

alone, however, is inadequate. Cross sections of the moderator nuclides

are also subject to cell fine-structure considerations in the resonance

region of the energy spectrum. Of all the moderator resonance region

cross sections, the most significant influence on reactivity is exerted by j
|

the elastic downscattering matrix, the terms of which for nuclide n are

given by: i

u j_ 1 Uk- 1

n j

ac e llk._, j : ..... ."k-I

Vl_ ]< du(PA(u) + V2./Uk dU_0M(U)

U. Uk.

du du' on(u'-*u)_0M(U ')
• S

-- W k ] (4.54)
Uk- I

du'(PM(U') i

W k in Eq. 4.54 may be considered as an epithermal "advantage

factor. " The expression to the right of W k in Eq. 4.54 is the conventional

integral for the elastic downscattering matrix used in GAM, where _0M(U') =

1 (1/E flux in the moderator). In applying the results of the two-region

resonance calculation, the approximation that_0M(U') = l in Eq. 4.54 is

retained. (In separate calculations, the result of this approximation was

deemed insignificant.) However, the advantage factors, W k, are applied

to the cross sections of the moderator nuclides in the fine groups of the

GAM calculation.

1966016284-210



4-55

4. II. 6 SPECIAL COLLISION PROBABILITY TABLES

As previously discussed, the cylinder equivalence principle is

applied in obtain_.ng collision probabilities for the concentric ring reson-

ance absorbers in the mockup fuel element. This permits the utilization

of tabulated (31) collision probabilities for cylinders, For purposes of

examining the validity of the cylinder equivalence principle, and in per-

forming the resonances calculationE for the tungsten ring configurations

of the Lewis Critical Experiments, special collision probability tables

were generated.

The specific calculation of collision probabilities in annular ring

geometries is carr_.ed out in the following fashion. The actualgeometry

of the ring structure is explicitly represented in a GAPLSN cylindrical

geometry P0 calculation. The outer boundary of the absorber is treated

as a vacuum, and a uniformly distributed source (flat source approxima-

tion), whose volume integral is normalized to unity, is specified in the

absorber rings. A series of calculations are performed, in which the

total cross section of the absorber is varied. The col]_sion probability,

then, is equivalent to the total number ol colIi._ions in the absorber, and

this quantity is tabulated as a function of _. The collision probability in

the moderator is obtained from the reciprocity theorem.

4. IZ TREATMENT OF TIIE BORON PLATE BOUNDARY IN THE

BERYLLIUM-REFLECTED CORE

The radial beryllium reflector in the beryllium-reflected corv

has an outside I/4-in. plate of aluminum mixed with B4C to represent

a nonreentrant boundary to thermal neutrons. Outside of the boral plate

is a water reflector that is neutronically infinite, but which returns some

epithermal neutrons through the plate to the beryllium and thus to the core.

Diffusion theory is inadequate to correctly represent black or nearly black

regions, and therefore it is necessary to terminate radial diffusion theory

1966016284-211



4-56

calculations of the beryllium-reflected core at the boral plate by speci-

fying the correct boundarl condition.

The conventional dlffu"ion theory boundary condition is specified

in terms of the linear extrapolation distance, d. For a totallyblack slab

boundary, transport theory specifies that d = .7104 Xtr, where Xtr is the

transport mean free path. This condition is adequate at the boral plate

boundary for thermal neutrons, but is a gross underestimation of the

extrapolation distance for neutrons of higher energy, where the transmis-

sion through the boral plate becomes significant. To determine a reason-

able linear extrapolation distance for epithermal neutrons, a radial trans-

port calculation was performed. In this PIS4 calculation, the boral plate

and the adjoining water reflector were explicitly represented. Values

for the epithermal linear extrapolation distances were then obtained from

the transport calculation by the followi -g expression:

d = - _0/grad g)0' (4.55)

where the subscript denotes values of the flux and itsgradient at the

boral plate boundary. The boundary condition is used in the GAZE dif-

fusion theory code in terms of the group-dependent parameter, _,.,whichI

is given by:

$. = d./D. , (4.56)
I I I

where D. is the diffusion coefficient for group i.
' I

The validity of the above method for treating the boral plate boun-

dary in a diffusion calculation may be evaluated by referring to Figs.

4.13 and 4. 14. These are plots of the radial flux distribution in an epi-

thermal energy group from 67 to 500 keV and a therrnal group from 0.05

to 0.09 eV, respectively. The top lines represent the transport solution,
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the bottom lines represent the diffusion theory solutions when all energy

groups are treated by the nonreentrant boundary condition at the boral

plate (d = . 7104 Xtr), and the middle lines are the diffusion theory solu-

tions when the epithermal extrapolation distances calculated from trans-

port theory are used. It is seen that the transport core fluxes are closely

represented by the diffusion theory solution employing calculated extra-

polation distances. Although the thermal flux boundary condition remains

at 0. 7104 Xtr' the improvement in the thermal flux comes about from a

better description of the epithermal flux, which serves as a source to the

thermal energy region.

4. 13 CALCULATION OF THE EFFECTIVE DELAYED NEUTRON

FRACTION

Following the notation of Henry, (37) the total effective delayed

neutron fraction (assumed to be time independent) is given by:

• uJ(u,)fi(u)B J "_ , --u')¢ 0 (r, u') , (4.57)

l

v . 1
where --Is the fundamental eigenvalue of the static Boltzmann equation, !

f.(u)z is the delayed neutron spectrum for precursor group i, and @0 and

_00 are the scalar flux and its adjoint, respectively. The sums are over

precursor groups (i) and fissile species (j). The quantity F is the con-

ventional normalization integral, defined by:
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• j

vJ(u')_ (r, u')cp0"(r, u)_00(r , u') , (4. 58)

where fJ(u) is the fission spectrum for fissile species j. Finally, the

time independent reactivity, p, is given by:

fvf - L [:p = _- d3rdu - 6Z(r, u)_00 (r, u)_P0(r , u) + du'6 Z (r, u', u) :
U

xz ]*
i j

(4.59)

where Z is the total cross section, zo is the P0 component of the scatter--J S

ing cross section, and 6 indicates the difference between perturbed and

unperturbed quantities.

The total effective delayed neutron fraction may be evaluated as

a function of eigenvalues of perturbed and unperturbed systems in the

following way. If the delayed neutron fractions in Eq. (4.59) are doubled,

and the eigenvalue v/v is adjusted to v'/v so that the net reactivity
O O

vanishes, Eq. (4.59) becomes:
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+f'(u)(l +6in)_]"V----E_(u)(lx U "_j)O
i J

+ fi(u)_ ]] • vJ(u ') _(r, u')_0o*(r, U)@o(r, u'), (4.60)

where fin in Eq. (4.60) is the Kronecker delta, and the sum over n is

over all precursor groups. Referring to Eqs, (4.57) and (4.58), Eq.

(4.60) can be written:

0 = vl_--_-_F- v_ F +_t'J' _eff F . (4.61)
o o

Then in terms of the multiplication factors,

1 1
k' =_ • k =_ (4.6Z)v'lu ' vlu

o o
D

the effective delayed neutron fraction can be obtained from the multiplica-

tion factors of two calculations:

k I -k

_eff = kZ ' (4.63)

where k is obtained from the initial criticality problem, and k' is ob-

tained from a calculation with the delayed neutron spectrum augmented i

by the following amount,

j o2E,o,o,,:.
u n j

i

I
1
!

1

]9660]6284-2]7



4-62

In practice the problem is solved by a multigroup scheme, where

integrals over lethargy are divided into .'inite groups:

k+ 1

Idu g (u)-____ J. du g(u). (4.64)
u k

Then two multigroup GAZE diffusion problems are solved, the first with

the fission spectrum given by:

sk = _iJ _" ]fjk (1 - flJ) + fik_i j (4.65)
. • I

and the second with the following fission spectrum:

.k

s'k= ZZ fJ (1- flJ)+ 2¢_iJ (4.66)

i j

Two fissile species are present in these cores. However, inas-

much as fissions in U 238 contribute a small fraction to the spectrum, the i

presence of U Z38 is treated in an approximate manner by assuming that

the prompt and delayed neutron spectra of U 235 and U 238 are identical.

Then the presence of UZ38 is taken into account by correcting the delayed

neutron fraction for U 235 in the following fashion:

Ira [ 235 -- _Z38 238 -238.--3rdu_o(r, u) LPZ35(u) Z;f (r, u) + -_ i_ (u)Z;f (r, u13z35, = z35 ..... ,
Z38.--

u) yZ35(u)Z_35(r, u) + yZ38(u)Z; i (r, u)

(4.67)
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For the 3. 0-in. core, _35' _35/ = l. OZ.

It is assumed that the ratio, _eff/_, is independent of the precur-

sor group, such that (fleff)i/_i = 3elf/.8. Thus each precursor group is

corrected by the enhancement of the total delayed neutron spectrum. This

is deemed to be an adequate approximation for these cores. A more re-

fined analysis could be carried out in which the enhancement of each pre-

cursor group could be obtained separately by eliminating the summation

over n in Eq. (4.60).

The delayed neutron spectrum, .8i fi

by Keepin,(38) is tabulated in the third column of Table 4.11. The U 235
K

fission spectrum, (1-8') f, as obtained from the GAM library, is given

in the second column of this table. The U 235 delayed neutron fraction

was corrected for the presence of U-238, as discussed earlier. Keepin

reports the following values for the total delayed neutron fractions of

U 235 and U238:

,82..35= O. 0065 :i:O.0002

.8238 = 0. 0147 _: 0. 0009

Table 4. I I

URANIUM 235 FISSION SPECTRUM AND

DELAYED NEUTRON SPECTRUM

Delayed Neutron

Spectrum
Group Fission Spectrum k
No. (l-.8,)fk .8ifij

1 3.01 to 14.92 MeV 0. 20535 0.0
2 1.35 to 3.01 MeV 0. 36419 0. 00027

3 0.91 to I. 35 MeV 0. 14885 0. 00079
4 0.41 to 0.91 MeV 0. 17507 0. 00252

5 0. II to 0.41 MeV 0. 08465 0. 00259

6 61.4 eV to 0. II MeV 0. 01527 0. 00046

7 2.38 to 61.4 eV 0.0 0.0
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V. MEASUREMENT AND EVALUATION OF

NEUTRON CROSS SECTIONS

5.1 INTRODUCTION

The cross sections of U-Z35, U-Z38, Be, Cd, W-18Z, W-183,

W-184, W-186 and A1 were evaluated in the energy range 0.01 eV to

15.0 MeV and reports were issued giving the results of these evalua-

tions. These reports are listed below.

I. "Neutron Cross Sections for U-Z38, " G. D. Joanou

and C. A. Stevens, General Atomic report, GA-6087

Rev. (1965).

Z. "Neutron Cross Sections for the Tungsten Isotopes, "
G. D. Joanou and C. A. Stevens, General Atomic

report GA-5885 (1965).

3. "Neutron Cross Sections for Aluminum, " G. D. Joanou

and C. A. Stevens, General Atomic report GA-5884
(1965).

4. "Neutron Cross Sections for U-Z35, " G. D. Joanou

and C. A. Stevens, General Atomic report GA-5944
(1965).

5. "Neutron Cross Sections for Be, " G. D. Joanou and

C. A. Stevens, General Atomic report GA-5905 (1965).

6. "Neutron Cross Sections for the Cd Isotopes, " M. K.

Drake, General Atomic report (unpublished).

5-1
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5. Z EPITHERMAL U z35 CROSS SECTIONS

It is well known that a discrepancy exists between the integral

measurements of 0_for U z35 and the calculated values from differential

data. Alpha is defined as the ratio of the infinitedilution capture integral

to the fission integral, both integrations performed over I/E spectra

above the cadmium cutoff energy (generally taken to be 0.50 eV); i.e. :

OD

dE 23

o c 51El

z35 c (5. l)O_

--fo (E)
C

The integral measurements for olmay be as low as Z0_0 below the calcu-
(39)

lated values from differential data, depending upon the set of differ-

ential data selected. Glean critical experiments, such as those performed

in recent years at Livermore, KAPL, and Brookhaven appear to favor the

lower values of ot suggested by the integral measurements.

Our concern with the epithermal fission cross sections arises

from the fact that approximately 30 percent of the total fissions in the

assemblies are epithermal (above 0.414 eV). Thus, roughly, a l0 percent
I

uncertainty in (Xrepresents more than one percent uncertainty in reactivity.

Some recent measured values of the fission integral (the denominator of

Eq. 5. l) and the epithermal value of a are summarized in Table 5. ',.

These are compared with calculated values based upon the recent U 235

(36)
cross sectzon report.

Because of the uncertainty surrounding the epithermal U Z35 cross

sections, a study was undertaken to determine the effect of normalizing

the present set of infinite-dilution cross sections 136;"" on the reactivity of

the 3.0-in. pitch core. The normalization was performed in the energy

range from 2.38 to I00.0 eV, where it is felt that the greatest uncertainty

1966016284-221



5-3

exists in the U 235 differential cross section data. The normalization was

done in the following manner. The infinite dilution fission integral from

14.9 lVieV to 0.50 eV was adjusted to a value of 276 barns by _ormaliza-

tion of the magnitude of af on the GAM data tape from 2.38 to 100.0 eV.

The value of 276 barns for the fission integral corresponds roughly to the

mean of the measured values given in Table 5. 1. The capture integral

was then adjusted by normalization of the values of c3 on the GAM data
n,

tape between 2.38 and 100 eV so as to yield the desired value of a between

I4.9 MeV and 0.50 eV. Two norrnalized values of¢_ were examined -

0.52 and 0.48. Admittedly the above procedure contains a high degree

of arbitrariness, since the energy region where the actual difficulty might

exist in the differential data is unknown. However, since the effect of the

fission cross section enters into the re:,<tor calculation in an integral

fashion, it is felt that the normalization procedure gives rise to a semi-

quantitative estimate of the effect of variation in the epithermal U 235

cross sections on reactivity.

Table 5. 1

MEASURED VALUES O1" THE U 235 FISSION INTEGRAL, AND

Fission Integral Cutoff

Inve stigator (harn_,) (eV) a

Hardy 274 ± II 0.50

Clayton 271 ± 25 0.49
Feiner (KAPL) a 292 • 18 0.50 .486 ± 0.025

Conway (l_ettis)b 288 ± 18 0.50 .550 ± 0.040

Bigham 272 • 8 0.45
Baumann 263 ± 9 0.60
Hellestrand 278 ± 9 0.50

Calculated 280.5 O.414 .536

258.2 0.532 .570

apublished in Trans. Am. Nucl. Society, V.ol. 7, No. I, June 1964.
Recent corrections in the data indicate a value for a of 0.51.

bpublished in Trans. Am. Nucl. Society, Vol. 7, No. 1, June 1964.
According to a recent private communication, the latest measurements
and data treatment indicate a preliminary value for a of 0.49,
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The results of the calculations are given in Table 5.2. In addition

to the two normalized sets of U 235 cross sections, a third set sugge.qted

by KAPL ¢40]'" was examined. For completeness, the fission integral and

value of 0f to 0 50 eV according to Eq. (5,1) are given in Table 5.2 for

each set of cross sections. The effect onk of the 3.0-in. pitch core is
OD

summarized in Column 4.

Table 5.2

RESULTS OF THE EXAMINATION OF VARIOUS

EPITHERMAL U 235 CROSS SECTION SETS

Fission tntegral_ k_ ,!
U 235 Cross Section to 0.50 eV tx of 3.0 in. ]

Set (barns) to 0.50 eV Pitch Core 6k% !

Standard Set 265 0. 563 I. 2403

(GA-5944)

Normalized to 276 0. 516 I. 2533 _ I. 0

a = 0.52

Normalized to 276 0. 480 I. 2587 + I. 5

' a = 0.48

KAPL Data Set 287 0,557 1.2511 _"0.9

The results demonstrate that the mockup core is quite sensitive

to the epithermal U 235 cross sections. Both the set normalized to

t_ = . 52 and the KAPL set lead to approximately one percent increase in

k. The further normalization to a = . 48 gives rise to an additional 0.5%

increase in reactivity. It appears that the initial adjustment of the fission

integral to a value of 276 barns accounts for approxlmately 0.5% of the

increase in k, and that each renormalization step in t_ gives rise to an

additional 0.5% increase. It should be noted that on the basis of the in-

tegral measurements, neither a fission integral magnitude of 276 barns

nor a value of _ = 0.48 is unreasonable. Indeed, reference to the error

bars given iu Table 5. l indicates that a further increase in the fission

Q
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integral of as much as 10 barns could be justified. The arbitrariness rest3

in the energy range to which the correction should be applied, as well as

the actual magnitude of the correction itself. We may conclude from this

UZ35study that all of the evidence points to more fissions and less parasi-

tic captures in the epithermal region, and that the error in the epithermal

U Z35 cross sections may account for as much as I.0 to I.5_0 in reactivity

for the 3.0-in. pitch core_

5.3 THE ENERGY DEPENDENCE OF NEUTRON CAPTURE CROSS

SECTION OF TUNGSTEN ISOTOPES FROM 0.01 TO I0.0 eV

5.3. 1 INTRODUCTION

Tungsten has become of interest as a structural material for high

temperature reactor applications due to its very high melting point. Since

the thermal neutron capture cross section of tungsten is not small it is

important to have accurate capture cross sections in the region of the

Maxwellian neutron velocity distribution. Due to the large temperature

difference between startup and operation, the energy dependence of the

capture cross section must be known over an appreciable energy interval.

The capture cross section shape may deviate from a I/v dependence due

to both positive and negative energy levels near the neutron binding energy

of the compound nucleus, and hence knowledge of the 2200 m/see value

is not sufficient.

Several techniques have been employed to obtain capture cross

sections in the low energy region:

I. Pile oscillator technique:(41)

This method requires that the cross section have a I/v

dependence, or a known energy dependence with which
the value obtained can be corrected.
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2. Activation measurements "(42).

This technique can be employed to obtain capture cross

sections if the decay scheme of the product nucleus is

known and if states with suitable half lives are present.

3. Total cross section measurements:

Information about the capture cross section can be ob-

tained from this kind of measurement provided the

scattering cross section is either small or well known,

neither of which is the case for tungsten. Complica-

tions arise when using this method due to the crystalline

binding effects, and hence it is usually the practice to

measure the total cross section at energies below the

Bragg cutoff and to extrapolate to thermal energies

assuming a I/v cross section dependence.(43) A cor-

rection must still be made for incoherent scattering,

_owever. (44)

4. Calculations usin$ resonance parameters:

The low energy cross section can be calculated from

measured resonance parameters, however, resonance

parameter determinations are subject to analytic and

, experimental limitations which usually result in unde-

sirably large errors. The calculations are further

hampered by the lack of information on resonances

outside the measured region, particularly negative
)

energy levels.

Obviously a direct energy-dependent measurement of the capture I

cross section is desirable. To date there has been no such measurement i

on any isotope reported in the literature. In this sectior, we shall describe i

the capture cross section measurements on the four most abundant tungsten

W182 183 184 186
isotopes, W , W and W No attempt was made to obtain

the cross sections in the Lorentzian part of the low energy resonances,

1

' I
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where the multiple scattering effects are large and strongly dependent

upon resonance parameters.

5.3. Z EXPERIMENTAL TECHNIQUES

5.3. Z. 1 Detector Efficiency

In the work reported here, the capture cross section was mea-

sured by observing the prompt gamma rays which are emitted by the

compound nucleus upon neutron capture. In general several gamma rays

will be emitted whose spectral distribution is a function of the capturing

isotope and the neutron energy The total energy of the gammas is very

nearly equal to the neutron binding energy of the compound nucleus. The

difference between the prompt gamma ray energy and the neutron binding i

energy is the kinetic energy of the capturing neutron, which is very small

at the neutron energies considered here, and may also be caused by long

lived product nucleus activity. Since it is usually not possible to make

corrections for changes in gamma spectra with neutron energy, it is

important that the gamma-ray detector have a gamma detection efficiency

which is independent of the gamma spect:-um. This has been achieved by

the high efficiency large liquid scintillator which was used in these mea-

surements at Gener&l Ato,nic. (45) A cross sectional view of the scintilla-

tor is shov,n in Fig. 5. I.

The calculated probability for at least one interaction by a gamma

ray before escaping the scintillator is shown in Fig. 5. g. It is not possible

to make a direct experimental check on this calculated intrinsic e_fi¢iency

since gammas which completely escape cannot contribute to the observed

pulse height distribution. It can be noted from the observed pulse height
J

distributions shown in Figs. 5.3 and 5.4 that small pulses are relatively

infrequent. Since small pulses are due to high energy garnrns which lose

only a small part of their energy in the scintillator it can be argued that
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the probability of no pulse at all is also small since energy loss by

Compton scattering, which is the dominant process, is a monotonic

function of the scattering angle.

A second check can be obtained by observing the capture rate at

zero bias for black samples of two different isotopes with markedly differ-

ent gamma spectra. Since the incident flux is the same, the capture

rates will differ by their relative intrinsic efficiencies. A good example

is gold, which is known to have a large fraction of high energy gammas

and W 18Z which has a much softer spectrum. (46) The observed capture

rates agreed to within Z. 5_/0.

It has been experimentally confirmed in every measurement to

date that the pulse height distribution from neutron capture into various

resonant states of the same isotope which have the same ingoing orbital

angular momenta are identical. An example of this is shown in Fig. 5.5
182

for the 4.15 and Zl. 2 eV levels in W This insensitivity to gamma

spectra changes owing to capture in various resonant states is a strong

indication that the fraction of capture events which exceed the lower level

bias (3 to 4 Me V) will not be varied by the changing contributions to the

isotropic cross section from various levels.

5.3. Z. 2 Apparatus

The neutron source used in these measurements was the General

Atomic linear accelerator. The machine parameters used were; electron

energy of Z8 MeV, currents of • 3 to 1 Amp, and burst widths of . 05 to

4.5 _ sec at 22.5 pulses per second. The shorter burst widths were used

to reduce the counting rate for the high cross section s_mple runs and to

obtain high resolution flux calibration data. The electron target assembly

is shown in Fig. 5.6. The electrons slowing down in the Fansteel target

produce bremsstrahlung which in turn produces high energy neutrons

with a broad maximum near 1 MeV. These neutrons were slowed _own
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to the epitherma! and thermal region by the water container which also

acts as a coolant for the target.

The neutron energy was determined by conventional time =of-flight

techniques. The effective flightpath length was 18.61 ± 0, 01 meters

which includes a 0.03 meter correction for neutron slowing down time and

the neutron scattering mean free path in the moderator. The entire flight

path was maintained at a pressure of less than 150 microns, including an

additional 2.5 meters beyond the sample. The electronics used for the

time of flightand pulse height data acquisition are shown in Fig. 5. 7.

Not shown are the two independent BF 3 flux monitoring channels which

sample the penumbra of the beam just before it enters the scintillator.

The sum of the counts in the two monitors was taken to be proportional

to the neutron flux at the sample. The signals from the monitors are

turned off for 50 _sec following the accelerator burst to eliminate effects

due to accelerator noise pickup and brernsstrahlung.

5. 3.Z. 3 Flux Shape

The flux data above 1 eV were taken with two different BF 3 de-

tectors placed at the point at which the neutron beam leaves the scintillator.

The ,smaller of the two was I in. in diameter with a 20 cm Hg fillingpres-

sure, and the larger one was 2 in. in diameter with a 76 cm Hg filling

pressure. The smaller counter was assumed to have a response pro-

portionat to the I/v boron cross section and the larger counter was

corrected for self protection which amounted to 3.0% at l eV and was

proportionately less at higher energies. After this correction the data

from both counters could be fittedto a high degree of accuracy by a

smoothing function _ (t) = KE _, where K is a flux normalization constant,

E is the neutron energy in eV and a is a constan¢' dependent upon the size

and type of moderator.
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The determination of the flux shape below 1 eV proved to be more

difficult. Consequently five techniques were investigated in an attempt to

obtain the relative neutron flux incident on the sample. These techniques

were:

1. A Z-in. diameter, 0.7-in. thick indium disk.

Z. Five Z-in. diameter, 0.1-in. thick indium disks spaced
approximately 1 in. apart.

3. .& Z-in. diameter, 0.4-in. thick natural boron disk. (In
this measurement the modular construction of the scintilla-

tor was utilized by turning off the outer cylinders and using

only the central annulus which allowed the low energy boron

capture gamma to be observed under low background condi-
tions. )

4. A Z-in. diameter, 0.03-in. thick cadmium disk.

5. A l-in. diarr.eter BF 3 detector with Z0 cm Hg filling pres-
sure placed downstream from the sample position.

Methods (1) through (4) depended upon the detection of capture

gamma rays in the large liquid scintillator.

The indium disks were "black" (< I_0transmission) below Z eV,

the boron was black below I.Z eV and the cadmium below .Z8 eV. All

of these black samples were placed at the same location in the scintilla- _

tor as the capture sample, i

There are several possible sources of error in the techniques em-

ploying the detection of gamma rays.

I. The gamma biasing efficiency may be neutron energy de-

pendent due to varying contributions to the capture cross
section by isotopes with different binding energies.

Z. The energy dependence of the fraction of the scattered
neutrons which are not captured before leaving the sample.

3. In general some of the capture gammas will be absorbed or

degraded in energy before leaving the capturing sample.

Since the mean distance that the neutrons penetrate into

the sample before the first interaction depends upon the

totalcross section, the attenuation of the gammas in the
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sample will be neutron energy dependent. This effect

arises from the exponential nature of the attenuation.

For s-wave capture the capture gammas are emitted

isotropically and hence the gamma transmission fcr a

capture occurring on the surface of an infinite slab
can be written:

1 d

f ./__
C" X

dx

T =--1 +--1 o {5.2)
s 2 2 l

o

and at the center:

d

f e dx

T = o (5.3)
c l

f ax
" 0

where;
i

X = COS _, !

/_ = effective gamma-ray attenuation coefficient, ._

d = sar:', ple thickness, I

O = scattering angle. ,_

Now T < T and hence a cross section dependence of the gamma attenua-
c s _

tion can be expected.

¢Effect (I) is small in the case of indium and cadmium since the low

energy cross section is dominated by a single low energy resonance. In

the case of boron it is completely absent since the branching ratio to the

470 keV level in B II is energy independent in the energy region of interest.

J

i_l _ ,
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Effect (2) can be estimated from the ratio of scattering to total

cross section. This ratio has a maximum value of 1_/0 for cadmium, 3%

for indium and 5% for boron. Since a large portion of the scattered neu-

trons are captured before leaving a black sample, the errors due to this

effect should be small compared to the above percentages.

Effect (3) will be small for the 0.03-in. cadmium since experience

has shown that attenuation of gammas in samples of this thickness is small

and hence the second order effect described above should be negligible.

The 0.4-in. boron slab is intermediate in thickness. An upper bound on

the second order sample attenuation effect can be obtained by using the

mass absorption coeffieient for the 470 keV capture gamma in boron. The

difference in transmission for an event at the face of and at the center of

an infinite slab is about 5%. Since edge effects and detection of Compton

scattered gammas reduce this effect the actual distortion is much less

th£n this even if an extreme change in cross section is assumed, which is

of course not the case.

Because of the much higher aeomic number of indium and the un-

known effective absorption for the capture gamma spectrum, the cross

section dependent gamma-ray attenuation is not so easy to estimate in
I

this case. Experimental comparisons discussed later will indicate the

magnitude of this effect, i

The thin BF 3 data were corrected for self protection and absorp-

tion it: the counter walls using the manufacturer's specifications. The

correction was about 1.8% at 0.01 eV.

Figure 5.8 shows the normalized ratio of the cadmium to boron

shapes from 0.01 to 0.28 eV and that of the normalized BF 3 to boron

shapes from 0.28 to 1.2 eV. It can be seen that these shapes are con-

sistent within statistics in the regions of comparison. Above 0.28 eY

the cadmium becomes thin and cannot be used. Below 0.2 eV the BF 3

data showed a systematic departure from the boron and cadmium shapes

which was about 3% ;_.t 0.01 eV. The reason for this departare is not

apparent. The BF 3 was placed in the scintillator in order to check the
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cross section of the counter walls. Good agreement with the copper cross

section was obtained. The absorption in the 0.0Z-in. aluminum window at

tae end of the drift tube could account for only about 0. l_0of the discre-

pancy. The error could be due to a boron deposit on the inside of the

counter wall, but this possibility could not be checked without destroying

the tube.

The 0.7-in. indium flux shape (1) also showed a systematic depar-

ture from the boron shape. The deviation shown in Fig. 5.9 has a shape

analogous to the indium cross section which tends to confirm the hypothe=

sis that the second order gamma attenuation effectdiscussed is important.

The five spaced indium slabs (Z) showed a similar deviation which was

slightly smaller in magnitude due to the reduced gamma absorption.

One of the best known capture cross sections is that of gold, and

hence measurements on gold were included as a check on the techniques

employed in the tungsten measurements.

In *he case of gold it is possible to obtain information about the

capture cross section from the activation cross section since the decay

scheme of 79Au198 is well known. (47) A recent compilation
of the low

energy cross section data on gold has been made (48) and points derived

from a fitto these data are shown in Fig. 5. I0. The calculated capture

cross sections obtained from the published resonance parameters using

the high and low limits on the product I_ I_ for the 4.906 eV resonance,
n

as listed in BNL-_5, and the best values of the remaining resonances up
(49) {

to 1 keV, as measured at Saclay, are shown in the figure. A statistical 1

calculation(501""was used to include the contribution of resonances above

1 keV. These two curves are reasonably representative of the uncertainty

in the calculated cross section since the low energy cross section is dom-

inated by the 4.906 eV resonance. The t_totalminus scattering w_curve was

obtained by subtracting the scattering cross section calculated from the

above parameters from the total cross section curve of BNL-325. The

potential scattering cross section of II. I ± .3 barns determined by Seth(51)

et al., was used in the calculation. The interference between resonant

and potential scattering was included only for the 4. 906 eV level since the
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Fig. 5. 10--Low energy gold cross sections obtained
from various sources. -
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interference contributions of the other levels can be expected to cancel.

The data points in the figure were obtained below 1 eV using the boron

flux shape described above. The excellent agreement between the data

points and the calculated curve tends to confirm the conclusions drawn

previously about the reliability of the boron flux shape.

5.3.2.4 Flux Calibration

The flux shape was made absolute by employing the saturated

resonance technique. This involves the measurement of the capture

rate in some energy interval in which the sample transmission is negli-

gible. It is important that capture predominate over scattering to reduce

the correction required for neutrons lost from the sample due to scatter-

ing collisions, and the thickness of the sample must not be so large as to

produce appreciable gamma ray attenuation effects.

These two conditions were fulfilled only by the 4.15 eV resonance
182

in W and the 4. 906 eV resonance in gold for the isotopes investigated

in this work. Typical flux calibration data are shown in Fig. 5. 11. The

saturated energy interval is indicated by a flattening of the resonance

peak. The energy interval indicated in the figure was chosen for the cal-

ibration, and the data in this interval were corrected for resolution and !

multiple scattering (SZ) effects using the parameters obtained by Bernabie (53) !

in the case of W 18Z, and the BNL 325 (54) parameters for gold. These i•
corrections were from 1 to 370 and are relatively insensitive to the values

of the resonance parameters. Hence the error in the calibration correc- i

tion used is negligible. Since the W 182 thermal cross section was mea-

sured with the same gamma energy bias which was used for the flux cali-

bration, no corrections for biasing efficiency were required for this iso-

tope. The other three tungsten isotopes do not have the same neutron bind-
18Z

ing energy as W , and their bias efficiencies cannot be expected to be

the s _me.
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In order to correct for these spectrum differences, time gated

pulse height distributions were taken for captures in the lowest energy

resonance in each of the isotopes. In order to minimize errors due to

background subtractions the f'sliding window" method of background accum-

ulation was employed. In this technique the sample is left in position and

the time window is moved to flight times slightly earlier and then slightly

later than the time corresponding to the resonance in question. Since the

time dependent backgrounds vary only slightly within the width of a typical

resonance, the average background accumulated in this fashion is repre-

sentative of the background in the resonance itself. Using this technique

the pulse height data were reliable down to_ I. 5 MeV. Below this energy

an extrapolation to zero bias is necessary. A_ can be seen from the mea-

sured pulse height distributions shown in Figs. 5.3 to 5.5, a linear extra-

polation is consistent with the shape of the distributions. The area under

the curves below 1.5 MeV is about 4_0 of the total. It is highly improbable

that the extrapolation could be in error by more than ± 56_0, and hence a

2_0 error was assumed. The exponential flux shape above 1 eV was nor-

ma]ized to the absolute flux at the calibration energy and the boron flux

shape was in turn normalized to the exponential flux between I. 05 and

1.20 eV. The measured absolute flux shape is shown as a function of time

in Fig. 5, 12.

The gold and natural tungsten data were taken using high purity

metallic disks of 2 in. in diameter. The sample thicknesses were

7.2.94 x 16 -4 and I, 795 x 10 -3 atoms/barn respectively. The tungsten

isotopic cross section data were acquired using tungsten trioxide powder

with the thicknesses and enrichments listed in Table 5.3.

I
J
t

i
1
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Table 5.3

ABUNDANGES

Enr iched Thickne ss

Isotope 180 l8___2 l8___3 18_.._ 18__6 atums/barn
-3

18Z <.0003 0.945 0.0209 0.0234 0.0109 2.423 x 10

183 <, 001 O. 052 O. 813 O. 073 O. 062 8. 685 x lO "4
-3

184 <.0005 0.0174 0.0174 0.942 0.0235 2.452 x 10

186 <.001 0.0057 0.0041 0.0183 0.972 1.2697 x 10 °3

The tricxide powder was placed in three different types of contain-

ments in order to detect errors which might arise due to scattering and

capture in the container materials. The containers used were:

I. Pressed caked with aluminum foilcover

2. Pressed with 10°/0by weight P1exiglas binder

3. Pressed into thin wall aluminum cans.

The samples in container (1) proved to be extremely fragile and

were used only in the first set of measurements. Thr_ Plexiglas binder

used in containment (2) increased the multiple scattering corrections re*

quired by a considerable amount and hence data acquired with the samples

in this form were used only to check the cross section at the peak of the

Maxwellian velocity distribution (.0253 eV) where energy changes of the

scattered neutron can be assumed to cancel. The 2200 m/sec cross sec-

tion obtained in this way agreed very well with that obtained with the

samples in forms (1) and (3).

The aluminum cans in form (3) had 0.02;.in. walls and a 0. IZ5 in.

thick rim. The tungsten trioxide was pressed into the cans using a special

die under 2 tons/sq in. pressure. Radiographs indicated that the samples

were uniform within ± 5_0. The weights o£ all the cans were adjusted to
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_he same value (10 grams) and an empty can placed in the neutron beam

was used to measure the capture rate in the aluminum. This data was

used to correct the tungsten data for captures in aluminum.

The effect of scattering from aluminum on the tungsten capture

rate was taken into account by adjusting the energy independent component

of the tungsten trioxide scattering cross section in each case.

5.3.3 METHOD OF ANALYSIS

.th
The equation which relates the capture rate in the 1 isotope to

the cross section is given by:

a°(_ °

Ci(t) = cisfl(t) (1-e'NaT) _ (5.4)aTfo

where:

¢. = efficiency for detection of captures in isotope i
1 Z

p(t) = neutron flux in neutrons/cm
2

N = number of sample atoms/cm
Z

@T = total cross section in cm
.th

a. = abundance of the 1 isotope1
.th

_/i = capture cross section of the 1 isotopeg
s = sample area in cm

f0 = probability of capture of an incident neutron on the first i
interaction i

f = total neutron capture probability.

If more than one isotope is present, then C -- Z;.C.. Solving for1 1

(7 . in this sum we obtain:
yl
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where C(t) is the number of capture counts observed at time t. The sum

over the depleted isotopes in Eq. (5.5) corrects for captures in isotopes

other than the enriched one. It should be noted in Eq. (5.5) that the (Y
7 k

are in general unknown. Hence Eq. (5.5) must be solved by iteration

employing a data set corresponding to each of the enriched isotopes, A

computer code was used to solve Eq. (5.5) at each time point for the

four tungsten isotopes and gold.

In the cases of natural tungsten and gold where the sum of the

abundance weighted isotopic capture cross sections is being measured,

Eq. (5.5) becomes:

C(tkrTf 0
= (5.6)

(rvT _ T(t )s_b(t)( 1_e- N(YT) f

where _T(t) is the efficiency for detecting a capture in a natural sample

given by:

Zic
iai(;Ti(t) (5.7 )

CT(t) = Z,iai(_yi(t)

The solution of Eqs. (5.5) and (5.6) requires a knowledge of the

multiple scattering effect, i.e., f0/f. The multiple scattering correc-

tion employed is a first order analytic calculation of the fraction fl of

neutrons which capture after the first scattering collision . The scatter-

ing cross sections for tungsten were those calculated from the resonance

parameters listed in Ref. 55. The low energy scattering cross sections

listed in Ref. 54 were used for oxygen and aluminum.

$
The low energy scattering cross sections listed in Ref. 55 seem to be
in error.

'el i_
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The calculation ignores energy changes of the scattered neutron

and the effects of thermal motion of the scattering nucleus. These effects

are appreciable in the Lorentzian portion of the low energy resonances

and hence no attempt was made to analyze the data in these regions.

The sample was considered to be an infinite slab which is justified

by the large diameter-thickness ratios for the samples employed. The
f0

geometric series approximation-_- - l=f 1 was used as the correction for

the total of all scattered neutron captures.

The cross section data shown in Fig. 5. 13 through 5.18 represent

the weighted average of data acquired on six different dates. In each case

the flux ,_hape and backgrounds as well as flux calibration and pulse height

distribution data were taken. In this way the effects of changes in the

apparatus between data runs were eliminated.

The time-of=flight data, after being corrected for analyzer dead

time and backgrounds, were grouped and interpolated on a set of energy

points. These energy points correspond to the data points shown in the

figures. In all cases the neutron energy resolution width is much smaller

than the energy difference between the points shown. Equation (5.5) was

solved for each of these energy groups, and hence contains a "resolution"
i

error which becomes appreciable when the flux shape or cross section

varies rapidly with energy. This occurs only in the low energy reson- ._

ances, and since, as explained earlier, the data in the vicinity of these
4

resonances are unreliable, the data points in these energy regions were

omitted from the figures.

The measured W 182 icross section shown in Fig. 5..13is significantly _
, 1

higher than that calculated from positive energy resonances including a

statisticalterm for the unresolved region. The discrepancy can be i

accounted for by postulating a I/v contribution from negative energy levels.

The choice of parameters for such a level is arbitrary with the sole restric-

tion that the "resonance" energy be much less than -10 eV in order that its

contribution vary essentially as I/v in the region of the measurement.
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Since W 182 is an even-even nucleus, g = I. The bes*. choice ofr is the
7

average radiation width of the positive energy levels, i.e., 57 meV. The
2

average reduced neutron width of 20 meV/eV I/ was chosen, which yields

a resonant energy of -30.7 eV, sufficiently small t,o make only a l/v

contribution. The dashed curve shown in Fig. 5. 13 was obtained by adding

this contribution to that of the positive energy levels. There is some in-

dication that the negative energy contribution does not quite vary as I/v

due to the systematic deviation near I0 eV. No attempt was made to im-

prove the fit by the inclusion of a non I/v negative energy contribution due

to the doubtful significance of the deviation.

The W 183 cross section shown in Fig. 5. 14 is slightly below the

calculated curve by an amount which exceeds the errors in this measure-

ment. The discrepancy is thought to be due to errors in the resonance

parameters used.
184

The W data points shown in Fig. 5. 17 lie well above the cal-

culated curve which again indicates a negative energy contribution. The

"parameters" for the negative energy level obtained in the same fashion

as those for W 182 are: g--l, r 57 meV, r '° eV I/2= = 48.4 meV/ , E =
n o

-II0eV. Again there is an indication of a non I/v negative energy contri-

bution, but the significance of this deviation is again doubtful.

Three calculated cross section curves for W 186 are shown in Fig.

5. 16. The upper one was obtained from the parameters listed in Ref. 55

and the lower one from those listed in Ref. 56. It can be seen that the

data points lie at an intermediate position. Since the cross section is

dominated by the 18.8 eV level, the error can probably be ascribed to
2

the I" F product for this level which is 1. 413 x 10 -2 c . for the measured
n7

curve as opposed to 1. 648 x 10 -2 eV 2 for the upper calculated curve and

1. 197 x 10 -2 eV 2 for the lower one. Since the radiation width used in the

upper curve is probably more reliable than the neutron width, the latter

quantity was adjusted to force agreement at _hermal energy. The result is

the dashed curve which is in good agreement with the data throughout the

measured energy interval.
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The measured natural tungsten cross section is shown in Fig. 5. 17

along with a calculation from the positive energy parameters listed in

Ref. 55. Also shown is the calculated cross section including the two

negative energy levels evaluated earlier as well as the adjusted neutron
186

width of the 18.8 eV level in W These two curves agree below 1 eV

due to a fortui'ous cancellation of the errors in the isotopic cross sections

calculated from the positive energy parameters. The natural tungsten

cross section obtained by abundance weighting the measured isotopic cross

sections are also shown. The natural tungsten cross section obtaineo in

this way is in very good agreement with the measured cross section of

natural tungsten except in the region near 10, Vwhere statistical uncer-

tainties are appreciable.

Finally in Fig. 5. 18 the measured gold cross section is compared

to that obtained from the best set of resonance parameters. It can be

seen that the agreement is very good throughout the energy region inves-

tigated.

5.3.4 EXPERIMENTAL RESULTS

The values obtained in this work for the thermal cross section of

W 182, W 183, W 184 and W 186 are given in Table 5.4. Also included a.'e

the values recommended in BNL 375 and the values calculated from the

measured resonance parameters of the positive energy states.

The natural tungsten cross sections listed in Table 5.4 were ob-

tained using the abundances listed in the Handbook of Physics and Chem-

istry. The relative contribution of the various isotopes to the natural

tungsten thermal cross section can be seen in Table 5.5.
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Table 5,4

CAPTURE CROSS SECTION AT ,02_,3 eV

From

Isotope BNL 325 Parameters This Work

180 60.0 + 60.0 a

182 20.0± 2.0 13.5 20 70+ 0.5

183 II,0± 1.0 9.5 9 97+ 0.3

184 2.0± 0,3 1.87 1 71± 0.-I

186 35.0± 3.0 44.2 b 37 8 + I.Z

Natural 19.2± I.0 19.9 18 29± 0.5

Calculated c 17.5 18 2 18 29± 0.5

Gold 98.8± 0.3 97.0 98 7 + 1.8

180
aThere are no reported parameters for W ; however, a resonance

at 15.8 eV has been assigned to this isotope. (57)

bA recent infinite dilution resc:,ance integral measurement on W
i86 (58)

yielded a value 20% lower than that calculated from resonance parameters,
which may indicate that the reported neutron width of thc 18 eV level is
too large.

180
"Calculated abundance-weighted cross section using 60 barns for W

The agreement between the measured and calculated natural cross
section of this work is fortuitous.

Table 5.5

The rmal Capture Thermal
Natural Cr o_ s Se ction Contr ±but±on

Isotope Abundance , (barns) _ (barns.) % ofTotal,

180 .00126 (60.0 ± 60.0) a 0.076 ± 0.076 0.4 ± 0.47.

182 .2631 20.7± 0.5 5.45 ± 0.13 29.8± 0.7

183 .1428 9.97± 0.3 1.42 ± 0.04 7.76±0.2

184 .3064 1.71 ± O. 1 0.52 ± 0.03 2.84±0.2

186 .2864 37.8± 1.2 10.83 ± 0.34 59.21±1.9

aBNL 325 valu,_"_..."d
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The error sources involved in the cross section determination

fall into three classes. These are: (1) errors which affect the normali-

zation, (Z) errors which affect the energy scale, and (3) errors which

affect the shape of the curve relative to the normalization point. Some of

the errors involved are not analytic in nature, and hence only subjective

estimates can be given. Table 5,6 enumerates all known sources of

errors and their estimated magnitude for each of the isotopes.

5.3.5 CONCLUSIONS

The magnitudes of the ZZ00 m/sec cross sections for W 18Z, W 183,
134 186

W , and W have been obtained with appreciably smaller errors than

have been previously reported. The capture cross section shapes reported

here for the tungsten isotopes are the first in this energy region, and illus-

trate the utility of the technique as a check on measured low energy reson-

ance parameter._ and in the determination of negative energy level effects.

The agreement between the natural tungsten cross section as measured

directl_ with that obtained from isotopic cross sections, as well as the

agreement of the gold cross section with the best values available lend

support to the bel ef that the techniques used here will be of value in ob-

taining ac¢.v_a.e low energy capture cross sections for most of the iso-

topes of interes_ in reactor physics.
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Table 5.6

CLASS (1) ERRORS IN NORMALIZATION

Error Type % Error

rungstenlgZ, 183, 184, 186 Gold

I-I Parameters of flux calibration resonances

(4. 15 eV in W 182 and 4. 906 eV in Au 187) <0.01 <0.01
1-2 Resolution correction to flux calibration. 0.04 <0.01

1-3 Analyzer dead time correction <0.01 <0.01
1-4 Statisticql errors in calibration interval 0.7 0.0
1-5 Background subtraction in calibration <0.0l <0.01
1-6 Purity and deviation from formula weight I. 0 0. I
1-7 Extrapolation to zero bias 2.0 a 0
1-8 Gain shift after normalization 0. g 0.7
1-9 Gamma attenuation in sample 0-I 0
1-10 Error in flux shape exponent 0.9 1.7

CLASS (Z) ERRORS IN ENERGY SCALE

All Isotopes

2-l Flight path length 0. I
Z-2 Frequency or analyzer clock 0. Z
2-3 Analyzer start time I. 0-0.0Z

CLASS (3) SHAPE ERRORS

WI8Z W183 W184 W186 Aul97

3-I Scattering cross section used in multiple scattering
calculation 0.5 0.3 0.8 0.3 0. 02

3-2 Assumption of no energy change in scattered neutrons,

infinite slab approximation and isotropic scattering
approximation in multiple scattering calculation <0. I b <0. l <0. I <0. l <0.01

3-5 Effect of WO 3 on aluminum capture 0.01 0. 3 0. b <0.01 0
3-6 Isotropic abundancies 0. 5 0.5 0.5 0.5 0

3-7 Subtraction of captures due to contaminatin 8 isotopes c 0. I 0.6 3.8 0.0Z 0
3-8 Statistical undertainty in points .2-3. . 1-5. I.-I0.. I-3. . 1-3.
3-9 Boron flux shape I. 0 I. 0 I. 0 I. 0 I. 0
3-10 Analyzer dead time correction <0.01 <0.01 <0.0l <0.01 <0.01
3-11 Insensitivity to gamma spectrum changes 0. I 0. I 0. I 0. I 0. I
3-1Z Flux-capture flight path difference, "-0.7 <0,7 <0.7 <0.7 <0.7
3-13 Background subtraction d <0.3 1.3-5. 2.-II. <O.Z <0.3
3-14 Error in flux shape exponent e <0.9 <0.9 <0.9 <0.9 <0.9

a 0.0 for W 182

b These limits might'be exceeded in the 5 to 7.5 eV reg,;on in W Ig2 and the 9 to I. 0 region in W Ig3
due to the large energy loss in oxygen scatterin 8 which mi.;ht scatter neutrons into the low energy
resonances in these isotopes.

c These errors are exceeded near the low energy .,esonances

d Errors due to backgrounds are largest near 1 and 10 eV, _nd are very much smaller at other
energies

• 1 to 10 -.V only

tq
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VI. ANALYTICAL RESULTS AND COMPARISON WITH EXPERIMENT

6. 1 CRITICALITY

6. 1. l VARIATION OF THE MULTIPLICATION FACTOR WITH LATTICE

PITCH

The relationship between the fuel element spacing and the multi-

plication factor of the assembly has been calculated for the lZl-fuel ele-

ment core reflected both by water and by beryllium side and bottom re-

flectors. The cadmium poison was omitted from these calculations. The

reflector configuration for the beryllium-reflected core calculations con-

sisted of the following - a side reflector represented as I. 7 cm of alumi-

num, 7.3 cm of beryllium, and 5 cm of water; a bottom reflector repre-

sented as 3.0 cm of aluminum on top of 10.0 cm of beryllium; and a top re-

flector represented as 2.5.0 cm of water.

In these calculations, the conventional resonance treatment using

GAM-II was used, the cell disadvantage factors were obtained by the one-

dimensional treatment, and the one-dimensional buckling iteration se-

quence was employed in obtaining keff. Both the fine structure calcula-

tion and the over-all diffusion calculations utilized a ten-group energy

structure shown in Table 6. I.

7'he results, for both the water- and beryllium-reflected cores at

seven values of the lattice pitch are shown in Table 6. Z and plotted in

Fig. 6. 1.

6-I
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Table 6. I

TEN-GROUP STRUCTURE FOR EIGENVALUE

CALCULATIONS

Group Energy Range

1 Z. 73 to 14.9 MeV

2. O. 498 to 2.73 MeV

3 O. 0674 to O. 498 MeV

4 O. 0614 to 67.4 keV

5 Z. 38 to 61.4 eV

6 O. 414 to Z. 38 eV

7 0.09 to 0. 414 eV

8 O. 05 to O. 09 eV

9 O. 03 to O. 05 eV

10 O. 0 to O. 03 eV

Table 6. Z

VARIATION OF EIGENVALUE WITH

FUEL ELEMENT PITCH (I21-ELEMENT CORE)

keff

Equivalent (Be Side keff

Pitch Cell Radius and Bottom {Water
(in_) (cm) H/U235 k Reflector) Reflector)

2.800 3.734 34.65 I..325 I.055 0. 960

Z.916 3.889 47.67 I 367 1.126 1.045

3.000 4.001 57.42 1 385 I.161 1.090

3. 156 4.209 76.25 I 396 1.20Z I. 144

3.290 4. 387 93. 13 I 389 I.Z14 1.166

3.450 4.601 114.4 1 359 I.ZI0 1.171

3.637 4.850 140.3 1 313 I. 179 I. 148
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6. l.Z CRITICALITY RESULTS FOR TF.E 3.0-in. PITCH, WATER-

REFLECTED CORE

The initialcalculation of the 3.0-in. pitch water-reflected core,

referred to as the "precritical" calculation, utilized methods previously

described. In particular, cell and cadmium disadvantage factors were ob-

tained by one-dimensional analyses, the conventional GAM-ll resonance

treatment was employed, and the one-dimensional buckling iteration se-

quence was utilized to obtain the effective multiplication factor. The ten-

group energy structure, given in Table 6. l, was again used. The homo-

genized atom densities in the core and reflector are given in Table 6.3.

Cadmium was _mitted in the radial description beyond 40.8 cm, to account

for the lack of a full poison complement for the outer ring of fuel elements.

The result of the calculation, the cadmium concentration in the

poison tubes for a critical IZl-element core, was 0.0953 moles of cad-

mium nitrate per liter. The initialloading of the core containing this

cadmium concentration reached criticalityat 112 fuel elements. Using

the measured worth of a fuel element in the outer ring, the estimated

multiplication factor for the entire 121-element core at this cadmium con-

centration was 1.0gl. Thus the precritical estimate of reactivity was low

by 2. 1% Ak/k.

A recalculation of the critical 121-element core, which contained

the as-loaded 0. 1225 moles per liter of cadmium nitrate, was performed.

This "refined" calculation incorporated the following features. The cell

and cadmium disadvantage factors were obtained by two-dimensional analy-

ses and the resonance treatment included the e2fect of the interstitial

U235material, resonance inter2erence, resonance self-shielding, and the

two-region cell. The effective multiplication factor was computed with

two-dimensional diffusion theory as well as a one-dimensional buckling

iteration. A drawing of the geometrical configuration used in the two-

dimensional calculation is shown in Fig. 6. Z. The results of the calcula-

tions are shown in Table 6.4. The significant discrepancy between theory
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Table 6.3

HOMOGENIZED ATOM DENSITIES FOR THE

3.0-IN. PITCH CORE

Nuclide .Atom Density (atoms/b-cm)

Core (0 to 44.01 cm)
-Z

H Z. 17Z x 10
-Z

O I.085 x I0
-Z

A1 I.845 x I0

-5
Ni 4.4x I0

Zr 9.83 x 10-5

Cd I13 (0 to 40.8 cm) 3. 545 x 10-7

Cd 113 (40.8 to 44.01 cm) 0.0

W 18z 2.519 x I0"4

W 183 I.374 x I0"4

W 184 2. 920 x 10-4

W 186 Z.710 x I0-4

U z35 3.735 x 10-4

U z38 1.5Zl x 10-3

Side P dlector (44.01 to 59.01 cm)

H 6. 677 x I0-z

O 3. 339 x I0-z

Top and Bottom Reflectors (25 cm)

H Z. 172 x I0"z

O I.085 x I0-z

-3
A1 8.49 x I0

and experiment, suggested by the precritical calculations, was eliminated.

Neutron balances from the precritical and "refined" one-dimensional cal-

culations of the 3.0-in. pitch, water-reflected core are compared in

Table 6.5.

l

)
t

t
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Table 6.4

RESULTS OF THE REFINED CALCULATION

OF THE 3.0-1N. PITCH, WATER-REFLECTED CORE

kef f

Calculated Measured % Dev.

One- Dimensional 1
Buckling Iteration 0.9989 I.0007 - 0. 18%

Two-Dimensional

Calculation Io0056 • .00103 1.0011 z ± 0.45± 0.10%

1. The experimental value of 1. 0000 has been corrected for the ex-

istence of the stainless steel guides and source tube to bring the
experimental configuration in line with the calculated configuration.

Z. Same as above, but in addition the experimental configuration has

been adjusted to include I0 cm additional top reflector contained in
the calculation.

3. Extrapolated from kef f = 1. 0036.
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Table 6.5

NEUTRON BALANCES FOR 3.0-IN. PlTGH, WATER-REFLECTED

CORE FROM ONE-DIMENSIONAL RAD_L DIFFUSION CALCULATION

Precritical Calculation Refined Calculation

Absorptions/Source Neutron

Epithe r real Ther real Epithe rmal Thermal

Nuclide (2.38 eV to 14.9 MeV) (0 to 2.38 eV) (_Z.38 eV to 14.9 MeV) (0 to 2.38 eV)

H 0. 0015 0. 0342 0. 0017 0. 0325

O 0. 0013 0. 0000 0. 0013 0. 0000

A1 0. 0031 0. 0088 0. 0030 0. 0086

Ni 0. o001 0. 0006 0.0001 0. 0006

Zr 0. 0002 0. 0001 0.0001 0. 0001

Cd 0. 0000 0. 0504 0.0000 0.0600

W 18Z 0. 0197 0.0090 0.0213 0.0095

W 183 O. 0210 O. 0022 O. 0222 O. 0024

W 184 O. 0025 O. OOlO O. 0027 O. OOlO

W 186 O. 0201 O. 0204 O. Olgl O. 0214

U 235 (captures) O. 0564 O. 0563 O. 0397 O. 0599

U 235 (fissions) 0. 0926 0. 3106 0. 0736 0. 3291

U 238 (captures) ('. 0397 0. 0115 0. 0398 0.0116

U 238 (fissions) 0. 0065 0. 0000 0. 0066 0.0000

Leakage/Source Neutron

Radial 0. 1671 0. 1676

Axial 0. 0507 0.0509

Total 0.2178 0. 2185
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6.1.3 CRITICAI,!TY RESULTS FOR THE 2.9-IN. PITCH WATER-

REFLECTED CORE

The Z. 9-in. pitch core was analyzed as outlined at the beginning

of Section 6.1.2. The homugenized atom densities in the core and reflec-

tor are given in Table 6.6. One refinement was incorporated into the

calculation, i.e., the inclusion of interstitial material in the resonance

treatment. Drawing upon the initial experience wlth the 3.0-in. pitch

core, the effective multiplication factor was normalized to 0.98 in the

_alculation of the critical cadmium concentration.

The calculated critical cadmium loading for a 121-element core

was 0. 0474 moles of cadmium nitrate per liter. The actual as-loaded

cadmium concentration was 0. 0431 moles/liter of cadmium nitrate. This

cadmium concentration led to a computed multiplication factor of 0. 986.

The core las critical after I19 fuel elements were loaded. Using the

measured worth of an outer ring fuel element, and the associated cad-

mium poison tubes, the estimated multiplicatior_ factor for the entire

IZl-eleme-t core was 1.008. Thus the predicted estimate of reactivity

was low by about 2. Z%. A neutron balance for the 2.9-in. pitch core _s

given in Table 6.7.

An unpoisoned 2.9-in. pitch core was also assembled. A sym-

metric loading of 85 fuel elements with no poison tubes was found to have

a multiplication of I. 0056. The calculated multiplication factor of this

assemLly was 0. 9899. The predicted estimate of reactivity for an unpoi-

soned 2.9-in. pitch core was thus low.b 7 1.57_/0.

Refined calculations were not performed for the 2.9-in. pitch core.

As discussed in Section 8. l, it is expected that a calculation similar to

the refined calculation of the 3.0-in. pitch water-reflected core would

diminish the discrepancy between analysis and experiment.
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TabJe 6.6

HOMOGF, NIZED ATOM DENSITIES FOR THE

Z. 9"IN. PITCH, WATER REFLECTED CORE

__ _Density
• " --_'_ _-"'=',,mmmm_

H Core (height =_108. crn, radius =. 42.54 cm) (atomn/b-cm)

0 1.856: JO "2

A1 0.928x 10"2

Ni 1. 974 x 10 -2

Zr 4. 708 :c 10 "5
cdll3

113 (0 to 39.43 cm radius) 1. 052 x 10 "4

Cd (39.43 to 42.54 or: "adius) 1. 883 x 10 -7W182
0.0

W183
2.695 x 10 "4

W184
I. 470 x 10 -4

. W186
3. 124 x 10 -4

U235
2. 899 x 10 -4

U238
3. 996 x 10 -4

1. 627 x 10 "3

0 6,677 x 10 "z ]

3.339 x I0 "2

H x
t

0 1. 856 x 10 "2 _

A1 0. _28 x iO "3 i
Cd|/3 /

0.908 x 10 -3 i

I. 885 x I0 "7 f

t

i

• /

/
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Table 6.7

NEUTRON BALANCE FOR THE Z.9-1N. PITGH, WATER-
REFLECTED CORE FROM RADIAL DIFFUSION CALCULATION

Absorptions/Source Neutron

Epithe r real The r real
Nuclide (2.38 eV to 14.9 eV) (0 to Z. 38 eV)

H 0. 0013 0. 0024

0. 0012 O. 0000

AI 0.0034 0.0083

Ni 0.0001 0.0005

Zr 0.0002 0.0000

Cd O. 0000 O. OZZO
18g

W 0.0213 0.0086

183
W 0.0240 0.00Zl

184
W 0. 0029 O. 0009

186
W 0.0213 0.0194

U z35 (captures) 0.0617 0.0536

U 235 (fissions) 0. 1023 0.2944

U 238 (captures) 0.4601 0.0109

U 238 (fissions) 0.0072 0.0000

Lea.kage/Source Neutron

Radial 0. 1909

Axial 0.0568

Total 0.2477

t
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6. 1.4 CRITICALITY RESULTS FOR THE 3.0qIN. PITCH, BERYLLIUM-
REFLECTED CORE

The calculations for the 3.0-in. pitch, beryllium-reflected core

were. also performed by the method outlined at the beginning of Section

6. 1.2. The homogenized atom densities in the core and reflectors are

given in Table 6.8. Two refinements were incorporated into the calcula-

tion, the inclusion of the interstitial material in the resonance treatment

and the utilization of two-dimensional calculations for the cadmium disad-

vantage factors. The beryllium-boron boundary was treated in the one-

dimensional diffusion calculations by the method discussed in Section 4.5.

A crystal kernel was used for beryllium0 although the results were nearly

identical when a free gas kernel was used. The effective multiplication

factor was normalized to a value of 0.98, as was done in the case of the

Z. 9-in. pitch core.

The calculated critical cadmium loading for a 121-element core

was 0. 232 moles of cadmium nitrate per liter. The actual as-loaded cad-

mium concentration was 0. Z20 moles/liter of cadmium nitrate. This cad-

mium concentration led to a computed multiplication factor of 0. 9865.

The core was critical with 121 fuel elements loaded, with an estimated

multiplication factor of 1. 0024. Thus th_ predicted estimate of reactivity

was low by I. 6%. A neutron balance for the beryllium-reflected core is

given in Table 6.9.

Refined calculations were not performed for the beryllium-reflected

core. As discussed in Section 8. I° it is expected that a calculation similar i

to the refined calculation of the 3.0-in. pitch, water-reflected core would i

diminish the discrepancy between analysis and experiment. !

6. I. 5 SUMMARY OF CRITICALITY RESULTS i

Table 6. I0 gives a summary of the criticality results reported in i
this section.

i
t
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Table 6.8

HOMOGENIZED ATOM DENSITIES FOR THE 3.0-IN.

PITCH BE-REFLECTED CORE

Radial Des cription

Nuclide Atom De ns ity
Core (0 to 44.01 cm)

H 2. 172 x 10 .2

O I.085 x 10-2

A1 I.845 x 10 -2

N. 4.4 x I0-5
i

-5
Zr c. 83 x 10

Cd 113 (0 to 40.41 cm) 8.627 x 10 -7

Cd 113 (40.41 to 44.01 cm) 0.0

W 182 2.519 x 10.4

W 183 1. 374 x 10 -4

W 184 2.920 x 10 -4

W 186 2.710 x 10 -4

U 235 3.735 x 10 -4

U 238 1.521 x 10 -3

Side Reflector (44.0, to 53.77 cm)

A1 (44.01 to 45.51 cm) 6.02 x 10 .2
-1

Be (45.51 to 52.79 cm) 1. 228 x l0

H (52.79 to 53.77 cm) 7.98 x 10 .2

C (52.79 to 53.77 cm) 3.99 x l0 .2

Axial .Des c ription
Bottom Reflector (0 to 23.5 cm)

H (0 to l0 cm) ' 6. 677 x 10 "z
-2

O (0 to 10 cm) 3. 339 x 10
-1

Be (10 to 20 cm) 1. 228 x 10

A1 (20 to 23.5 cm) 6.02 x 10 °2

Top Reflector (131.5 to 136.5 cm)
H Same as core

O San_e as core
-3

A1 4. 740 x 10

Cd Same as core

t
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_, Table 6.9

NEUTRON BALANCE FOR THE 3.0-1N. PITCH, BE-REFLECTED
CORE FROM RADIAL DIFFUSION CALCULATION

Absorptions/Source Neutrons
Epithe rrnal The rmal

Nuclide (Z.38 eV to 14.9 eV) (0 to 2.38 eV)

H 0. 0018 0. 0310

0 O. 0014 O. 0000

A1 O. 0033 0. 0082

Ni 0. 0001 0. 0005

Zr 0. 000Z 0. 0000

Cd O. 0000 0. 0914

W 182 0. 0231 0. 0087

W 183 0. 0248 0.0021

W TM 0. 0030 0.0009

W 186 0. 0230 0.0194

U 235 (captures) 0. 0642 0.0529

U 235 (fissions) 0. 1046 O. 2900

U 238 (captures) 0. 0483 0. 0107

U 238 (fissions) 0. 0069 0. 0000

Leakases/Source Neutron

Radial 0. 1246

Axial O. 0495

Total O. 1741
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6. Z REACTIVITY

6. Z. 1 PROMPT NEUTRON LIFETIME

A value of the prompt neutron lifetime was calculated for each of

the critical assemblies constructed. The calculations were carried out by

inserting a uniformly distributed I/v absorber in a ten-group GAZE cal-

culation. The lifetime w._$ then found from the relationship:

Ak= --, (6.i)
0_

where Ak is the change in eigenvalue caused by the I/v absorber, and the

asymptotic decay constant, _, is equivalent to the atom density of the I/v

absorber.

The values found by this analysis are compared to the experimen-

tally zneasured values in Table 6. 1I.

Table 6. II

COMPARISON OF MEASURED AND CALCULATED

VALUES OF THE PROMPT NEUTRON LIFETIME

Measured Calculated

Pitch Lifetime Lifetime

(in.) Reflector Fue__._! Poison (_sec) ,,,(_sec) i

Z. 9 Water 85 none Z8.9 Z8 8 l•

Z.9 Water I19 195 "H" Z9.9 ZS. 0 !
5 "D"

3.0 Water 121 Z06 "C" Z8.9 Z5.0 !
!

3.0 Beryllium lZ0 194 "K" 31.6 _6.6 !

The results are discussed in Section 8.2. !

f

t
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6. Z. Z EFFECTIVE DELAYED NEUTRON FRACTION

The effective delayed neutron fraction was calculated for each of

the three critical assemblies using the method suggested by Henry, which

is described in detail in Section4.13. In summary, the _initial criticalit H

prob],;m (with the normal fission spectrum) was solved in the GAZE dif-

fusion code using a buckling iteration scheme to account for transverse

leakage. The contribution of delayed neutrons to the fission spectrum

was then doubled and the problem again solved. The value of fleff was

calculated from the equation

k' -k

eff = k2 (6. Z)

where k' is the eigenvalue of the perturbed problem and k is the eigen-

value of the initial problem. The results for each core are listed in

Table 6.12.

Table 6. lZ

CALCULATED VALUES FOR THE EFFECTIVE

DELAYED NEUTRON FRACTION

Core fleff

2.9-in. pitch, water-re.f_ected 0.00724

3.0-in. pitch, water-reflected 0.00712

3.0-in. pitch, beryllium-reflected 0. 00702

The values of fleff tend toward the infinite medium value of 0. 0065 as

leakage decreases. This trend may be seen in the data of Table 6.12.
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6.2. 3 REACTIVITY AND THE ASYMPTOTIC" PERIOD

The relationship between the asymptotic period and the rea_tivity

of the mockup core was determined for each assemb]y from the "nhour

equation,

P = _,o_ + I +t.oo + I o_ + )'i
i i

wherep is the reactivity in dollars, wis the inverse period, t is the !

prompt neutron lifetime, and _i and )'i are the delayed neutron fraction

and decay constant of the i'th delayed neutron group.

The delayed neutron fractions and d--cay cor, stants used for U 235

are shown in Table 6.13 for the 3.0-in. pitch, water-reflected core. The

effective delayed neutron fraction for each group was obtained from _eff

using the abundances quoted by Keepin, et al. (59) The solution of the in-

hour equation using the above data is shown in Fig. 6.3 for the same core.

This relationship is typical and changed only slightly from one configura-

tion to another.

Table 6. 13

EFFECTIVE DELAYED NEUTRON FRACTIONS AND DECAY

CONSTANTS FOR U 23S IN 3.0-1N. PITCH CORE

t
Delayed Neutron 1/2 Decay Constant Effective Delay,,d

Group (sec........) (sec" 1) Neutron Fracticm

1 55.7 0. 0124 0. 000235
2 22.7 O. 0305 O. 001559
3 6.22 O. lll 0.001396

4 2.30 O. 301 O. 002812
5 O. 613 1. 13 O. 000819
6 O. 231 3. O0 O. 000299

O. 00712

1966016284-280



6-19

or_

0

o

eo

ib-

1966016284-281



6-Z0

6. Z.4 CONTROL ROD WORTHS

The reactivity worths of the safety and regulating rods were cal-

culated in the 3.0-in. pitch, water-reflected core. The calculations made

use of a "black" boundary condition for the rod surface; a tw'o-dimensional

calculation of one quarter of the core was performed using the GAMBLE

code in X-Y geometry.

The core and control rod representation used in the calculatlon is

shown in Fig, 6.4. Region 1 of Fig. 6.4 represents the region in which

cadmium tubes are present. Region Z does not contain cadmium in order

to account for the lack of poison tubes at the out:_:L4e of the outer row of

fuel elements. Region 4 was represented as a nondiffusion region in the

calculations. (The use of jagged internal boundaries to represent curved

internal boundaries introduces little error in this type of a problem. )

The safety and regulating rods were represented as "black" boun-

daries. At the rod surface the following boundary condition was used

D. grad g)ii - l
= (6.4)

g)i Z. 13IZ '

where grad _i is taken normal to the rod surface.

The five-groap structure shown in Table 6.14 was chosen, Axial

leakage was taken into account by using transverse bucklings derived from

an axial GAZE calculation, The control rods were represented as black

nondiffusion regions below 0.414 eV and by diffusion regions containing

only ;admium above 0.414 eV.

The results are given in Table 6. ]5 for the cases of no rods, two

regulatin& rods, and all eight rods. Case 4 is included to demonstrate

the effect of rod absorptions above 0.414 eV. Case 5 gives the worth of the

six sa,ety rods, obtained by subtraction from Cases Z and 3. Figures 6.5

and 6 6 are Group 5 flux plots along the X and Y axes, respectively, for

1966016284-282



6-Zl

1 _-""_- 0.905 IN.ILo.,, ,,.
"1 1.500 IN.

y HEASUREDI_UD DIMENSIONS (IN.)

l
L

NONDIFFUSION REG4

L_
t

1 I-L

i!,,, LL

__°_°° t___ , Ll
I 2 H20 REFL L

t /_ co_E( CADMIUH INCL) CORE
..(NO

SAFETY _ CAD)

RODS

Fig. 6.4--XY GAMBLE Representation

1966016284-283



6-22

Table 6. 14

FIVE-GROUP STRUCTURE FOR CONTROL

ROD CALCULATIONS

Group Energy Range

1 14.9 MeV to 67.4 keV

Z 67.4 keV to 0.414 eV

3 0.414 eVto 0.09 eV

4 0.09 eVto 0.05 eV

5 0.05 eVto 0.0 eV

Table 6.15

ROD WORTH RESULTS

Case No. of a AkeffRelative
Dollars/Rod

No. Rods" keff- to Unrodded _ '=,_,eff=O. O071Z) Comment

1 0 O. 998155 .......... I

Z 2 0.991025 0.007130 0.007208 $0.506 !i

3 8 O. 964948 O. 035207 0. 036480 0.640 I
T4 2 0.993264 0.004891 0. 004933 0.346 No rod ab-

s o r ption
above
O. 414 eV

5 6 ........ 0. 029272 0.685 Calculated
from Cases
2 and 3

aExtrapolated from GAMBLE
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the three calculated configurations. The flux distributions suggest that

interaction between rods is insignificant, thus lending credence to the

subtraction scheme for obtaining the worth of the six safety rods.

The significant fraction of captures in the rods at energies greater

than 0. 414 eV prompted an investigation of the five-group structure used

in the calculations. Since the contribution to the cadmium absorption

cross sections in Group Z is primarily from the small energy band be-

tween 0. 414 and Z.38 eV, itwas suspected that the effect of averaging the

cross section over the large energy band from 0.414 eV to 67.4 keV might

introduce a significant error into the calculations. Furthermore, the CAM

spectrum in the important energy band of 0. 414 to 2.38 eV is significantly

different from the thermal spectrum in the same band computed by the

GATHER code. In order to investigate these effects, identical GAMBLE

calculations were performed, one with the five-group structure and the

other with a ten-group structure incorporating GATHER cross sections up

to Z. 38 eV. No significant difference in rod absorptions above 0. 414 eV

was observed between the two calculations, j

As shown in Table 6.15, single rod values of $0. 506 and $0. 685

were predicted for the regulating and safety rods respectively. They are

in close agreement with the measured values for this core of $0. 575 and

$0.644.

6. Z. 5 CALCULATION OF THE EXCESS REACTIVITY

The experimental mapping technique described in Section 3. Z. 3 was

investigated analytically. The purpose of the analysis was to compare the

calculated reactivity of a core with no cadmium to that predicted for the

same core by summing the removal worth of small bands of cadmium.

The 3.0-in. pitch, water-reflected core was represented in a series of

GAZE radial calculations. This core had an equivalent radius of 44.01

cm; however, since Z08 poison tubes were assumed to be loaded, the
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cadmium was homogenized within a radius of 40.8 cm. A homogenized

unshielded Cd 113 atom density of 6.8 x 10 -7 atom/b cm was used in the

core to reduce kef f to 1. 0016, and the calculations were done in the ten-

group energy structure of Table 6. 1.

The worth of a one-cm thick annulus of homogenized cadmium was

determined at 11 different radial positions by eigenvalue calculations. The

calculated worths are plotted in Fig. 6.7. The function plotted in Fig. 6.7

of CdI
H is the core height and (r2 - rl) = I.0 cm. The area under this curve,

which is the totalworth of all the Cd I13 has a value of 0.09172 Ak/k.

This compares well with the total cadmium worth of 0. 09012 obtained from

the eigenvalues of the unpoisoned and poisoned cores. (Due to the prelim-

inary nature of these calculations, the cadmium density is different than

that reported in Section 3.)

The analysis showed that this experimental method of estimating

the total cadmium poison worth was valid. Since the experiment was done
i

by removing only one rod at a time at various radii, the experimental re-

sults resemble the curve shown in Fig. 6.8. This was obtained from the
2 2

previous figure by dividing the calculated values by _(r 2 - rl), and thus

represents the removal worth of a square cm of homogenized cadmium

from a homogenized core.

The eigenvalue of each of the three poisoned cores was calculated

with no cadmium. The methods were identical to those presented in

Section 6.1for precritical calculations. The calculated results are shown

in Table 6.16.
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Table 6.16

COMPARISON OF PREDICTED AND

MEASURED EXCESS REACTIVITY

k- 1 Mapped
------- Excess

Calculated kPeffo Reactivity Error

Core k (S___!_) ($) ($)
2.9-in. water refl. 1.0252 3.40 6.61 - 3.21

3.0-in. water refl. 1.0895 II.54 14.39 - 2.85

3.0-in. Be refl. 1.1429 17.81 20.55 - 2.74

(The calculated eigenvalue of the beryllium-reflected core is slightlylower

than that of the lattice-pitch calculations reported in Section 6.1 because, of

the difference between the "as-built" oeryllium reflector and the reflector

considered in the lattice-pitchcalculations. ) The results are discussed

in Section VIII.

6.2.6 RADIAL WORTH OF THE CADMIUM POISON TUBES

The worth of a poison tube (0. 1255 molar Cd(NO3)2) compared to i

a dummy tube filled with water was measured at various radial locations "_

in the 3. O-in. pitch, water-reflected core. The predicted worth as a I

function of radius for the same core was obtained using a perturbation

analysis. The direct and adjoint flux at each radial posiiion was calculated

using the GAZE code with a ten-group energy structure. The worth was

calculated from the relationship;

1966016284-291



6=30

' z/
i j

" _ _=aJ5 ZT(r)_0i(r)_0 i (r}d ri

1 f i " '_. 3

Ji j

1 Z/6Di(r) grad _0i(r)grad _i*(r)d3r (6.5)
+_-

i

with

. ri j

The scalar flux and adjoint for group i at space point r are denoted
i

Pi_) and representby q)i(r)and _oi (r) in Eqs. (6.5) and (6.6};Z T, _(i-'j)

the macroscopic cross sections in the i'thgroup for total events) pro-

ductions, and scattering to group j and _ is the fraction of fission neutrons

born in group i. The worths of the cadmium poison tubes calculated from

Eqs. (6.5) and (6.6) are compared with the measured values in Table 6.17.

The agreement is good for all but the last two locations which are affected

by heterogeneities at the core reflector interface.

p_

1966016284-292



6-31

Table 6.17

COMPARISON OF EXPERIMENTAL AND ANALYTICAL

POISON ROD WORTHS (0. IZ55 molar Gd(NO 3 )2 )

Measured Worth from

Worth Perturbation

Tube Location Radius (cm) __ Analysis ($)

f-12 4 40 -0. 1316 -0. 1276

f-ll 8 80 -0. 1252 -0. 1216

e-12 II 64 -0. I188 -0. I157

e-ll 15 86 -0. I099 -0. I048

d-12 19 18 -0.0988 -0.0945

d-ll 23 28 -0.0829 -0.0805

c-12 26 76 -0.0727 -0.0680

c- 11 30.80 -0. 0547 -0. 0537

b-12 34.36 -0. 0409 -0. 0420
b- lI 38.35 -0. 030Z -0. 0337

a-12 41.97 -0. 0375 -0. 0471

6.2.7 CADMIUM WORTH AS A FUNCTION OF CONCENTRATION

The worth, relative to water, of various concentrations of cadmium

were calculated for poison tube location f-12 in the 3.0 in. pitch, water-

reflected core. The worths were calculated from perturbatior, theory using

Eqs. (6.5) and (6.6). The cadr._ium disadvantage facto_ s "were obtained by i

the two-dimensional calculation d_scussed in Section 4, I0. Z, which gave good

results for Cd(NO3) Z concentrations of up to 0.17 moles/liter. The results

are shown in Table 6.18 and compared to the corresponding measurements.

The agreement between the calculated and measured values is good.

6.2.8 WORTH OF FUEL ASSEMBLY COMPONENTS

The worth of the U 238 rings, the tungsten foils, and the uranium-

aluminum foils were measured at three locations in the 3.0-in. pitch core.

Experimental details are given in Section 3.2.6. The worths were calculated

by perturbation methods at all three locatxons and also by direct eigenvalue

J,
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Table 6. 18

COMPARISON OF EXPERIMENTAL AND CALCULATED

WORTHS FOR VARIOUS CADMIUM CONCENTRATIONS

CdNO 3 Concentration Measured Worth. Calculated Wo1"th
moles/liter $ $

0. 0314 0. 0387 0. 0361
O. 0628 O. 0736 O. 0690
O. 0956 O. 106_ O. 1007 2
0. 1108 0. 1207 0. 1147

0. 1255 0. 1320 0. 1288
0. 1677 0. 1613 0. 1618

calculation for one location at the center. The perturbation method was

discussed in Section 6.2.6. The eigenvalue method consisted of repre-

senting the core before and after r_ _noval of the components of the center

fuel elements in ten-group diffusion calculations. The worth was then

computed from the relationship,

k I - k 2

Ap = klkz (6.7)

Disadvantage factors of the H, O, and AI in the center cell were set equal

to unity for the eigenvalue calculations following removal of the fuel. The

results of :he analysis are shown in Table 6.19.

The reactivity worths of a poison tube, the W rings, and the U 238

ring were also calculated for the 2.9-in. pitch core using the perturbation

method. The cadmium disadvantage factors were obtained by the one-

dimensional, tube-centered calculation discusse( _n Section4.10. The re-

sults are compared in Table 6.20 with the experimental values. A dis-

cussion of the results is given in Section V_'_.

i
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Table 6. 19

COMPARISON OF EXPERIMENTAL AND ANALYTICAL

FUEL ELEMENT COMPONENT WORTHS

(3.0-in. ]_itch, Water-Reflected Core)

Calculated Worth from
Measured Worth from Perturbation

Worth Eig envalues Analysis
Material $ $ $

Location G-7 (Center)

U z38 ring - O. 113 - O. 115 - O. 114
W foils - 0.35Z - 0.3Z9 - 0. 313
U-A1 foils + A1 structure + I. 08Z + I. 011 + 0. 665

Sum $ 0. 617

Location B6 (Next to Outer Row)

U Z38 ring - 0.0Z7 - 0. 036
W foils - 0. 101 - 0. 099
U-A1 + A1 structure + 0. 366 + 0. Z07

Sum + 0. Z38

Location A5 (Outer Row)

U Z38 ring - 0.019 - 0.0Z5
, W foils - 0.071 - 0. 071

U-A1 + A1 structure + 0.358 _ 0.19Z

Sum $ 0. Z68

Table 6.Z0

COMPARISON OF EXPERIMENTAL AND ANALYTICAL FUEL

ELEMENT COMPONENT WORTHS

(Center Cell in the Z. 9-in. Pitch Core)

Material Measured Worth Calculated Worth

Tungsten - $0.3Z6 - $0. 331

U Z38 ring - $0. II0 - $0. IZ0

Cadmium tube (0.0431 molar) - $0. 0478 - $0. 0483

1966016284-295



6-34

6. Z. 9 WORTH OF UPPER REFLECTOR

The measured worth of various water heights in the upper reflec-

tor is reported in Section 3. Z.8. Calculated values were obtained for two

water heights in the 3.0-in. pitch, water-reflected core from ten-group

axial diffusion calculations. The results are compared to measured values

in Table 6. ZI. The agreement is good, lending confidence to the use of

a homogenized reflector in the criticality calculations. The slight differ-

ence between measured and calculated values may be caused by a small

difference in the reference point used for the core-reflector interface.

Table 6.21

COMPARISON OF MEASURED AND CALCULATED

TOP REFLECTOR WORTHS

Water Height Measured Worth Calculated

in Reflector (Interpolated) Worth

(in.) $ $

I. ?YZ 0. Z86 0. 301

5. 906 0. 606 0. 615

6. Z. 10 NEUTRONIC SIMULATION EXPERIMENT

An analysis of the pseudo-reference fuel element was made for

the configuration described in Section 3. Z. 7. The five-stage replacement )
184 I

contained seven tungsten rings enriched in W and one ring enriched in

W183; the fuel rings were obtained from the corresponding mockup fuel

stages.

High energy and thermal disadvantage factors were calculated for

the pseudo-reference fuel stages using the GAPLSN code; a Pl expansion

of the scattering cross sections and an S4 approximation for the angular

flux was made in the standard ten-group structure. Broad group-averaged

cross sections were then obtained for the simulated fuel stages; they were

used in a perturbation analysis of the reactivity worths of the fuel components.
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The perturbation equations solved are given in Section 6. Z. 6. In

this experiment only five of the twenty-four stages in a mockup fuel ele-

ment were replaced by the pseudo-reference fuel stages. For purposes

of analysis they were assigned the average flux and adjoint flux in the

axial direction, and the analysis was confined to a radial perturbation.

The results thus illustrate the compensations in worth between the mock-

up and pseudo-reference elements. A complete two-dimensional analysis

was not made because of the expense involved in separate direct and ad-

joint flux calculations.

The calculated values for k are given for the pseudo-reference

and mockup stages in Table 6.2Z. The pseudo-reference stage had a k

of 1. 1791, just . 008Z _k/k larger than the mockup element value of 1. 1694.

The measured reactivity of the five pseudo-reference stages was + $0. 0008

greater than the mockup, which when converted to a full core accounts for

about one-third of the small discrepancy. Thus the calculated values of

k would be within . 005 Ak/k if the mockup and pseudo-reference stages

were exactly matched in worth.

, A fractional absorption table for the two cases is also given in
!

Table 6. ZZ. A comparison of the Fermi age to Z. 38 eV in the same table

shows the effect of the inelastic scattering of tungsten which lowers the

age in the pseudo-reference case. l

A c,_mparison of removal worths for each isotope as calculated by

the perturbation analysis is given in Table 6.23. The results are dis- I

cussed in Section VIH.

6.3 FLUX AND POWER DISTRIBUTIONS

6.3.1 POWER DENSITY IN THE FUEL RINGS

The measured power density in each ring of the central fuel element

is shown in Table 3.17 for the 3.0-in. pitch assembly. Calculated values

of the power density for this cor_ were obtained from one-dimensional

transport calculations described in Section 4.8. The calculated and

measure4 values are compared in Table 6. Z4.
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Table 6. ZZ

GOMPARISON OF NEUTRON BALANGE FOR
MOCKUP AND PSEUDO-REFERENCE FUEL STAGES

Frac%ionai Absorptions Fractional Absorptions
above Z. 38 eV below Z. 38 eV

Nuclide Mockup Pseudo-Reference Mockup Pseudo-Reference

H 0022 .00ZZ 0360 .0366

0019 .0017 0000 .0000

A1 0044 .0042 0096 .0116

Ni 0002 0006

Zr 000Z .000Z 0001 .0001

Gd 0000 0001 12Z4 .1265

W 182 0287 0201 0102 .0058

W 183 0309 0733 0025 .0167

W TM 0038 0235 0011 .0137

W 186 0284 0177 0ZZ8 .0110

U 235 2113 2092 4005 .4196

U 238 0699 0061 0125 .0001

Sum .3819 .3583 .6183 .6417

k 1.1694 1.1791

Z Z
r (2.38 eV) 102.6 cm 95.3 cm

%
P
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Table 6. Z3

REMOVAL WORTH OF NUCLIDES IN MOCKUP AND

PSEUDO- REFERENCE ELEMENT

Nuclide Mockup Element Pseudo-Reference Element

Rern3val Worth of Parasitic Capture (Cents)

H I.88 I.86

0 o. 06 o. 06
ILl 0.63 0.72

W 13Z I.6Z I.04

W 183 I.3Z 3.6Z

W TM 0.Z0 I.56

W 186 Z. Z4 I.Zl

U z35 6. 17 6. 19

U z3_ Z.9Z 0. Z3

Removal Worth of Fission Capture (Cents)

U 235 21.97 ZZ. 14

U z38 0.30 0.01

Removal Worth of Fission Production (Cents)

uZ35 - 41. 19 - 41.49
Z38 - 0.88 - O. OZ

Removal Worth of Scattering (Cents)

H - 9. 10 - 9. Zl

0 - O. 19 - O. 20
A1 - 0.41 - 0.41 i

W 18z - 0.02 - 0.01 i

W 183 - O. OZ - 0.07 _
W TM - 0.03 - 0.35

W 186 - 0.03 - 0.01 iU z35 - 0.0Z - 0.0Z

U 238 - 0.15 -- 0.0 i

Total Removal Worth (Gents)

- 12.73 - 13.15

1966016284-299



6-38

Table 6.24

COMPARISON OF CALCULATED

AND MEASURED POWER DENSITY

(Fuel Rings in Central Element of 3.0-in. Pitch Core)

Fuel Measured Calculated

Ring Power Density Power Density

A 0. 653 0.640

B 0.670 0.663

C 0.723 0.722

D 0. 824 0.823

E 1. 000 1. 000

The measured values are the averages of the two points measured in each

fuel ring. Both sets are normalized to unity in the outer ring (Ring E).

The agreement between the measured and calculated values is excellent.

6.3. Z GOLD CADMIUM RATIOS

Experimental values of the gold cadmium ratio are reported in

Section 3.3.6. The measurements were made on the exterior surface

of the U 238 ring using 0.02_ in. thick cadmium covers.

The cadmium ratio was calculated as

_I {Ya(E)q)(E)dE
0

C.R. = (6.8)

f _a(E)_o(E)dE
0.414 eV
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197
Values of the absorption cross section for Au were calculated in the

resonance region by the GANIT (601"" code using the Nordheim integral tech-

nique. Gold resonances through the 194 eV resonance were included in

the calculation of the absorption cross section, which was averaged over

each GAM-II fine group below 194 eV. Broad group cross sections for

the standard epithermal group structure were then computed using the

average cell flux obtained from a GAM-II calculation as a weighting func-

tion.

The average thermal absorption cross sections for the five thermal
I

groups were obtained by weighting a -- absorber with the thermal flux cellv

spectrum calculated by the GATHER-II code. The therrnal absorption

cross sections were normalized to a 2200 m/sec value of 98.8 barns for

Au 197.

Equation (6.8) was then evaluated by the relationship

10

i=l

, C.R. = 6 ' (6.9)

aai(Pi
i=l

where,, is the average flux in energy group i at the location of the foil.

The fluxes at the surface of the U 238 ring were obtained in the standard

ten-group structure from one-dimensional cell calculations. These fluxes

are ap?ropriate for an element in the center ol the core, and were used to

calculate the cadmium ratio at that location (element G-7). Fluxes for an

explicitfuel element ring could not be calculated with conlidence at the

core edge due to the change in spectrum caused by the reflector; conse-

quently the average group fluxes at the location of element A-4 were ob-

tained from a GAZE diffuaion calculation for the homogenized core. The

results are shown in Table 6.25.
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Table 6. Z5

COMPARISON OF EXPERIMENTAL AND

CALCULATED CADMIUM RATIOS FOR GOLD

Core Pitch Foil Location Calculated C.R. Measured C. R.

Z.9 in. U Z38 ring, G-7 I.44 I.45

3.0 in. U Z38 ring, G-7 1.50 1.51

3.0 in. U z38 ring, A-4 Z. 49 Z. 54

The agreement is excellent for measurements made at the center of the

core and is reasonable for the measurement made at the core edge. A

positioning uncertainty of only 0.04 cm would account for the 3_/0discre-

pancy at the core edge.

6.3.3 FLUX AND POWER DISTRIBUTIONS IN THE CORE

Axial flux traverses with Cu foils are shown in Fig. 3.9 for the

3.0-in. pitch, water-reflected core. The bare activations have been cal-

culated using the ten-group axial flux profiles from a GAZE calculation.

The infinitedilution resonance integral for Cu was used in the resonance

energy region. The results are shown in Fig. 6.9 and compared to the

experimental data. The agreement is good between the calculated and

measured activations at all points aside from the bottom reflector. The

deviation in the bottom reflector may be explained by the termination of

the reflector at Z5.0 cm in the calculations.

Radial power traverses along two radii were also made in the 3.0-

in. pitch, water-reflected core, and are reported in Section 3.3.5. These

activations can only be compared to homogenized radial calculations at '

equivalent cell positions. In such a comparison the cell d,.sadvantage fac-

tors are constant from point to point and the over-all power distribution

can then be compared to homogenized core calculations. This comparison

is made in Fig. 6. 10 for the "E" ring activations taken from the two radial
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Fig. 6.9--Measured versus calculated activation for Cu foils
3. O-in. pitch, water-reflected core
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power distributions, Figs. 3. l0 and 3.11 . The calculated power distri=

bution was obtained from a ten=group radial GAZE calculation. Aside

from some scatter, the calculated power density curve is in good agree=

ment with the measured points. The two measurements in the outer ring

of fuel elements are higher than the calculated points, which may be ex=

plained by the proximity of the reflector interface.

The measured axial power distribution in the 3.0 in. pitch, beryl=

lium-reflected core is compared with the results of a homogenized axial

GAZE calculation in Fig. 6. 11. A consistent deviation between the mea-

sured and calculated power density is apparent near the bottom beryllium

reflector. The deviation is discussed in Section VIII.

Radial power density profiles in ring "E t' were measured at five

axial levels in the beryllium-reflected core. These data have all been

normalized to the power density profile from a radial GAZE calculation

and plotted in Fig. 6. 1Z. The agreement is reasonable, aside from the

points in the outermost fuel element.

6.3.4 ANALYSIS IN SUPPORT OF THE GAMMA HEATING i

EXPERIMENT

The gamma heating experiment and the results of the measure=

ments are discussed in Section 3.6. The results are contingent upon

calculation of the absolute core power. Additional calculations were per-

formed to establish the general validity of the numerous measurements.

The measured power density in each ring was used to make the

geometry correction in the ring activation measurements. The measured

results shown in Table 3.20 may be compared with the calcttlated results of

Table 6.24. The measured power densities from the gamma heating

experiment are up to 6_0 higher than those from the transport cell calcu-

lation. The agreement is adequate to justify the use of the experimental

data for counting geometry corrections.
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The relative power of Stage 12 in each fuel element position was

measured to use in finding the total core power. Calculated values were

also obtained from a GAMBLE calculation in which the entire core and

reflector was represented. The power density at the Stage 12 level was

then calculated by averaging over the radius occupied by each cell. The

comparison between calculated and measured values is given in Table 6.26;

the data are normalized to the center fuel stage in each case. The differ-

ence between the calculated and measured relative powers is less than 4%

in every element except]K-I, J-l, and H-I. These three elements are the

outermost elements of the assembly and show in each case a higher actual

power than that calculated in the homogenized core. The agreement justi-

fies the use of the experimental data in calculating the total core power.

Both gold and manganese foils were activated on the outside of the

U Z38 ring in Stage IZ of element G-7 in order to measure the flux level of

the assembly. The actual power level could then be computed by normal-

ization to the GAMBLE results. Thermal disadvantage factors appropriate

to the position of the foils in the cell were taken from the corresponding

transport cell calculation. The subcadmium flux (below 0. 414 eV) found

by the GAMBLE two-dimensional calculation was then used to find the

saturated subcadmium activity of the foils. The calculated relative ac-

tivity of the gold and manganese foils per watt of core power is given in

Table 6. Z7.

6.4 TEMPERATURE COEFFICIENTS

The reactivity of the 3.0-in. pitch, water-reflected and beryllium-

reflected cores has been calculated as a function of temperature, and

compared with the results of experiment. Four values of tbe temperature

were chosen; 27°C, 50°C, 70°G, and 100°C for all of the calculations.
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Table 6.26

COMPARISON OF MEASURED AND CALCULATED
RELATIVE POWERS IN STAGE 12

Relative Power Per Element

Element No. Measured Calcu/ated % Difference

K-I 0.744 0. 685 - 8.0

J- 1 0. 724 0. 693 - 4.3

J-2 0.712 0.715 + 0.4

J-3 0.800 0.808 + 1.0

H-I 0.771 0.696 - 9.7

H-Z 0.671 0.697 + 3.9

H-3 0.781 0.793 + 1.5

H-4 0.883 0.884 + 0.1

H-5 0.949 0.947 - 0.2

G-2 0.709 0.686 - 3.2

G-3 0.733 0.750 + 2.3

G-4 0.851 0.853 + 0.2

" G-5 0. 938 0. 933 - 0 . 5 rr

G-6 0.983 0.982 - 0. I

G-7 I.000 I.000

Table 6.27

FOIL ACTIVATION CALCULATION

?-ZOOm/sec Subcadmium
Activation activation

Cross Section _ dis/sec 1Nuclide wt % (barns } ImiUigram - watt

gold 100. 98.8_. Z 135.5+. Z

manganese 80. 13. Ze. I 51.9 + . 4

These calculations were used to estimate the core power in the gamma

heating experiment.

1966016284-309



6-4_

The following physical changes were assumed to occur in the

assembly with temperature.

a. The water and beryllium density and cadmium concen-

tration decrease with temperature by the reduction
factors shown in Table 6. Z8.

b. The grid plate and axial structural members freely ex-

pand with temperature in a linear fashion, according

tothe formula, _,(T) =_, (1 +TAT), where 7 = Z.35 x
10- 5oc- 1 (for aluminum_.

The following nuclear changes were accounted for in the calcula-

tions:

a. The appropriate hydrogen Nelkin kernel or beryllium

crystal and gas kernels were used at each value of the

temperature. Accordingly, the free gas kernel for

oxygen was computed for the same temperature.

b. Separate resonance calculations for the tungsten iso-

topes and U 238 were performed at each value of the

tempe ratur e.

Table 6. g8

WATER AND CADMIUM DENSITY REDUCTION FACTORS

Temperature (°G) Density Reduction Factor

27 1. 00000

50 0.99198
70 O. 98168

100 O. 9617Z

BERYLLIUM DENSITY REDUCTION FACTORS

Temperature (°,C) Density Reduction Factor

27 1. 000
50 O. 999Z
7 0 O. 9986

100 O. 9976
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The methods used in the calculations correspond to the methods

used in the precritical analysis of the 3.0-in. pitch, water-reflected core

(see Section 6. I.2). The group structure in the thermal region was ex-

panded, as shown in Table 6.29. This expansion was necessary, particu-

larly in the calculation of the disadvantage factors, to adequately repre-

sent the component of the temperature coefficientassociated with the

thermal utilization(see Table 6.30). The calculations were converged
-5

to I0 in k. The disadvantage factors for all of the calculations were

obtained at a single value of the temperature, namely 27°G. In order to

evaluate the effect on the temperature coefficient of the change in disad-

vantage factors with temperature, the calculation of the water-reflected

core at 100°C was repeated with disadvantage factors appropriate to this

temperature.

The final results of the calculations are shown in Tables 6.31 and

6.32. Table 6.31 shows the results for the water-reflected core and

Table 6.32 for the beryllium-reflected core, using both the crystal and

gas kernels for beryllium. The reactivity, relative to 27°C, is defined i

by:

p(T, 27 °) = k(T)'k(Z7°) (6.10)

effkiT)ki 27°)

and the temperature coefficient between temperatures T 1 and T Z is

given by:

,k(T2)-k(TI)

_p = _effk(Tz)k(Tl)!T2,Tl] (6. ll)
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Table 6.g9

GROUP STRUCTURE FOR TEMPERATURE

COEFFICIENT CALCULATIONS

Group Energy Ra %je

1 14.9 to 2.7 MeV

Z Z.7 to .498 MeV

3 497.9 to 67.4 keY

4 67.4 keV to 61.4 eV
5 61.4 to Z.38 eV

6 Z.38 to 1.9 eV

7 1.9 to 1.2 eV
8 l. Zto 1.0 eV

9 1.0to .6eV

10 0.6 to 0.414 eV

11 0.414 to 0.33 eV

IZ 0.33 to 0.Z3 eV

13 0. Z3 to .16 eV

14 0. 16 to .IZ eV

15 O. 12 to . 09 eV

16 0.09 to .075 eV
17 0. 075 to .06 eV

18 O. 06 to . 05 eV

19 0 05 to .04 eV
Z0 0.04 to .03 eV

Zl 0.03 to .0Z eV

ZZ 0.0Z to .01 eV

Z3 0.01 to 0.0 eV

Table 6.30

THERMAL UTILIZATION CALCULATED BY

GATHER WITH 5- AND 18-GROUP DISADVANTAGE FACTORS
4

fa 6__if

27°C 100°C 27°-"100°

5-Group .7 11415 .7 12670 +. 001763

18-Group ..704990 .707493 +. 003545

aThe magnitude of f should not be compared with subsequent values, as
these calculations were performed with a constant cadmium concentra-

tion, as well as a different ZT°C kernel.
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Table 6.31

TEMPERATURE COEFFICIENT RESULTS FOR THE

3.0-1N. PITCH, WATER-REFLECTED CORE

Temperature p(T, 27 °) Ap
(°C) kef_f (cents) (cents/°C)

27° 0.971037 --
+ 0: Zl

50° 0.971359 + 4.8
- 0:86

70 ° 0.970206 - 12.4 -
- 1:45

I00° 0.967306 - 55.8

Table 6.32

TEMPERATURE COEFFICIENT RESULTS FOR THE 3.0-1N.

PITCH, BERYLLIUM-REFLECTED CORE

Crystal Kernel Gas Kernel

Temp. p(T, 27 °) _p p(T, 27 °) _p
°C keff cents cents/°C keff cents cents/°C

27 O. 988772 - '0.. 988600 -
-1.04 -1.03

50 O. 987137 -23.9 O. 986984 -23.7
-0.88 -0.87

70 0.985937 -41.5 0.985797 -41.1
-1.83 -1.81

I00 0.982206 -96.6 0.982124 -95.3 _I
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where _eff : " 00712 for the water-reflected core and _eff = ' 00700 for the

beryllium-reflected core. The calculated values of the reactivity are com-

pared with the measured values in Fig. 6. 13

The results given in Tables 6.31 and 6.32 are not quite complete,

since they do not reflect the change in cell thermal disadvantage factors

v.ith temperature. As pointed out earlier, the effect of the change in cell

thermal disadvantage factors was examined at a temperature of 100°C for

the water-reflected core. Both the cadmium and cell disadvantage factors

were recalculated, and the calculations reflect the diminution of water and

cadmium densities as well as the change in the hydrogen and oxygen ker-

nels. The results of these calculations are given in Table 6.33, where

the reactivity and temperature coefficient between 27°C and 100°C are

tabulated, both with and without consideration of the change in thermal

disadvantage factors. The results are compared with the measured over-

all temperature coefficient, extrapolated from 80°C.

Table 6.33

OVERALL TEMPERATURE COEFFICIENT

(Water-Reflected Core)

Calculated

Temperature p(T, Z7°) Ap(100 °, Z7°) Measured

(°C) kef_.__f (cents) (cents/°C) _p(100 °, Z7°)

Z7°C 0. 971037 .....

- 0.76

100°C 0. 967306 - 55.8 - 0.63 a

(change in thermal

disadvantage factor s
neglected) - 0.58

100°C 0.968Z15 - 42. 1

(change in thermal
disadvantage _actors
considered)

aExtrapolated from 80°C
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Fig. 6. 13--Comparison of experimental and calculated valuea of
the effect of temperature on reactivity
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A better understanding of the temperature coefficient can be gained

by dissociating the coefficient into its component parts. This has been

done in Table 6.34 for the water-reflected core and in Table 6.35 for the

beryllium-reflected core. The usual "generalized five-factor formula"

components were computed from the final radial diffusion calculation. The

individual components were defined as follows"

2.38 eV

/ d3r/ dE_(E) Y_f(r-_E)_o(r,E)
core o , (6. lZ)

,I Z.38 eV

/ d3r/ dE_FUel(r'E)_°(r'E)a
core o

Z. 38 eV

/ d3r/ dE_ Fuel(_' E)_0(_'E)a

f core o
= 2.38 eV (6.13)

core o

O0

/ d3r / dE_ (E)_f(r--p E)(_(r-- E )

core o
( = 2.38 eV ' (6. 14)

fd3rf d E_(E)_f(_', E)_0 (_', E)
core o

i

J
I
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2.38 eV

f d3rf dE_(r, E)_o(_, E)
core o , 16. 151

f d3rf dE_ (r-'Eh°(r' E)a
core o

CO

core o

PNL = _, CO..........

core o core o (6.161

6.5 CALCULATION OF THE PROMPT NEUTRON DECAY CONSTANT

Measurements of (_, the prompt neutron decay constant, for the

3.0-in. pitch, water-reflected core were reported in Section 3.5. These

data have been corrected to "standard" core values. (The "standard"

core contains Z04 poison tubes and 121 fuel elements. ) Values of(_ have

also been calculated for the same three cases, using the l/v poison re-

moval method.

In order to eliminate discrepancies the calculations utilized all of

the refinements mentioned in Section 6.1.2 of this report. Thermal disad-

vantage factors for cadmium were obtained from two-dimensional X-Y

transport cell calculations. Thermal disadvantage factors for the other

fuel constituents were obtained from two-dimensional R-Z transport cell

calculations. Fuel disadvantage factors were calculated £or cells contain-

ing Cd(NO3} Z concentration of 0.0 and 0. IZ55 moles/liter. The disadvantage

factors for the two higher concentrations were then obtained by extrapola-

tion since the changes were small and linear over a wide range of Cd(NO3) Z

molarities. The -esonance treatment incorporated the refinements dis-

cussed in Section 4.11.
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The standard ten-group energy ztructure was used and broad

group cross sections were obtained from a calculation of the energy spec-

trum in each of the three cases.

The calculation of a is based on the well known one-dimensional

group-diffusion equation for a non-critical system:

(6.17)

j

where _0i is the flux in energy group i, _a, i' i_', i' and _(i-'j) are the usual

macroscopic cross sections for absorption, fission, and group transfer,

×i and v. are the group fission yield and neutron yield per fission, and3

D.B. z represents the transverse leakage. The value of v. is the inverse1 I 1

, of the average inverse velocity. The quantity xi(l-fl) is the prompt neu-

tron contribution to the total production rate in the group.

The GAZE code was used to find a by means of a search routine

in which the atom density of a l/v absorber is adjusted everywhere in

the assembly until the eigenvalue is just equal to 1+8. The a search was

made in both axial and radial directions in a one-dimensional leakage

synthesis. This procedure was followed in the three calculated cases.

The results are shown in Table 6.36.

The values of reactivity were obtained in both the experimental

and calculated cases from the equation,

1+_
 eff

P' = 1 ' (6.18)

L
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where an experimental value of 28.9 micro sec was used for the prompt

neutron lifetime, &, and 0. 00712 was used for _eff' the effective delayed

neutron fraction. The experimental values were further corrected to the

standard core values given above. The results are discussed in Section ,

VIII.

Table 6.36

COMPARISON OF CALCULATED AND MEASURED VALUES OF c_

(3.0-1N. PITCH, WATER-REFLECTED CORE)

Cadmium

Gonc.

(moles/ c_Measured c_ Calculated p Measured p Calculated Difference
liter) (sec "1) (sec -1 ) ($) ($) ($)

0.1255 - 340. - 685. - 0.38 - 1.8Z - 1.44

0.1677 - 941. 1539. - 2.91 - 5.49 - 2.58

0. 2899 - 2280. - 3028. - 9.02 -12.37 - 3.35

/

¢

l

i
I
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VII. CRITICAL EXPERIMENTS PERFORMED BY

NASA LEWIS RESEARCH CENTER

7. 1 DESCRIPTION OF EXPERIMENTS

Ten critical exgeriments were selected for analysis from among

a number of experiments made at the Lewis Research Center. The experi-

ments used aqueous solutions of uranium oxyfluoride and covered a range

of moderator/uranium ratios as well as different core heights, varying

numbers of penetrating tubes, and differing numbers of tungsten cylinders

in the empty tubes. The ten experiments which were selected are listed

in Table 7. 1.

Table 7. 1

EXPERIMENTS SELECTED FOR ANALYSIS

Critical Height

Voided Tubes NH'Nu Z35/ {in. ) Solution Density

1 0 15Z. 9 5.44 I.Z071

Z 0 995.0 I0.76 I.0310

3 0 1650.0 zg. 95 I.0180

4 19 IZ40.0 zg. 69 I.0Z45

5 37 865.0 zg. 66 I.0359

6 37 634.0 20.25 I.0496
7 37 436.0 15 Z4 1.07Z7

8 37 (3W) 436.0 29.74 I.07Z7

9 37 (ZW) 509.0 Z9.60 I.06ZI

I0 37 (lW) 634.0 30.28 I.0496

7-I

P_
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Experiments 1, Z, and 3 display critical height vs the hydrogen, to

uranium-Z35 ratio (R) for nonvoid solutions. Experiments 3, 4, and 5

show the effect of increasing void fraction vs R for constant heights; and

Experiments 5, 6, and 7, all having constant void fraction, show the var-

iation of R with critical height. Experiments 8, 9, 10, and 5, all at con-

stant critical height, provide a comparison of the effect of 3, Z, 1 and no

tungsten cylindrical inserts, respectively, vs R.

A correction of -0. 10 in. was applied to the solution heights given

in Table 7. 1 for Experiments Z through 10 to account for the lower alumi-

num gridplate.

The ten experiments were done in cylindrical geometry, and were

radially reflected with approximately six inches of water. The dimen-

sions of the core and reflector vessels and the penetrating tubes are listed

in Table 7. Z. All vessel materials and tubes are fabricated of 6061 alum-

inum.

Table 7. Z

DIMENSIONS OF CRITICAL ASSEMBLIES

Thickne ss

o.d. (in.) i.d. (in.) Wall (in.) Base (in.)

Core Vessel 30. 535 zg. 980 O.Z77 O. 500

Reflector Vessel 43. 475 42. 475 0.50 0.50 sheet

Tubes 3. 015 Z.74Z --- 0. 375

,& triangular lattice pitch of 3.8 in. was used in all cases for the

voided tubes.

Inserts of nested cylindrical tungsten tubes were used in Experi-

ments 8-10. These tubes, fabricated of natural tur_sten, were of the

dimensions shown in Table 7.3.

i
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Table 7.3

DIMENSIONS OF TUNGSTEN TUBE INSERTS

Height Av. Weight

o.d. (in.) i.d. (in.) (in.) (_ms)

WL (Large) Z. 637 Z. 597 36 1875

WM (Intermediate) 2. 213 2. 173 36 1612

WS (Small) 1. 844 1. 804 36 1287

Critical assemblies 4 through 10 which have penetrating tubes

could not be represented by single region cores, since the cell structure

did not extend over the entire assembly. For this reason these assem-

blies were considered to be two-region cores. The inner core region

contained the tubes and had a diameter equivalent to that of a core of 37

hexagonal cells (19 in the case of Experiment 4). The region between

the inner core diameter and the core vessel wall was calculated with a

full density fuel solution. Volume fractions for the entire core are given

in Table 7.4 along with the volume fractions of the Wigner-Seitz cell used

in the inner core regions.
D

Table 7.4

VOLUME FR2,CTIONS

Single Wigner-Seitz Cell of Experiments 4-10

Fuel Solution 0. 4291
Aluminum Tube 0. 0987

Central Space 0. 4722

1. 0000

Entire Core (Excluding Re_lector)

Dilute (Inner) Dense (Outer)
Fuel Solution Fuel Solution Total

Cores 1-3 1. 000 1. 000

Core 4 O. 3367 O. 6633 1. 000
Cores 5-10 O. 6555 O. 3445 1. 000
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The inner core regions of Experiments 4-I0 were uniformly homo-

genized into one mixture. The homogenized atom densities for all experi-

ments are given in Table 7.5.

Table 7.5

HOMOGENIZED ATOM DENSITIES

Lewis Critical Experimt.nts
(Atoms/b-era multiplied by 10 �t�)

Re_ion of full density solution

Experiment .No--

Nuclide ! _ _ _ _ _ _. 8 9 IO

H 651.73 665.00 665.96 665.47 664.63 663.62 661.89 661.89 662.68 663.62

O 335.01 333.98 333.85 333.89 333,96 334.05 334. g0 334.20 334.13 334.05

F 9.1510 1 4342 0.8661 1.1516 1.6488 2.2461 3.2577 3.2577 2.7938 2.2461

U 234 0.0467 0.00733 0.00442 0.00589 0.00843 0.01147 0.01664 0.91664 0.01427 0.01147

U 235 4.2640 0.6683 0.403_ 0.5367 0.7684 1.0467 J '.': 1.5181 1.3019 1.0467

U 236 0.0073 0.00114 0.00069 0.0009Z 0.00132 0.00180 0.00261 0.00261 0.00224 0.00180

U 238 0.2570 0.04032 0.02429 0.03238 0.'04635 0.06312 0.09154 0.09154 0.07848 0.06312

Region of voided tubes

Experiment No.

Nu-lide 4 _ _ Z _ 9 10

H 285.55 285.19 284.76 284.02 284.02 284.36 284.76

" O 143. Z7 143.30 143.34 143.41 143.41 143.38 143.34

F 0.4941 0.7075 0.9638 1.398 1.398 1.19R8 0.9638

AI 59.417 59.417 59.417 59.417 59.417 59.417 59.417
182

W 0. 0. 0. 0. 5.279 3.197 1.451

W 183 0. 0. 0. 0. 2.880 1.744 0.7916

W 184 O. O. O. O. 6.119 3.705 1.682

W 186 O. 0. O. 0. 5.679 3.439 1.561

U 234 0.002527 0.003617 0.00492 0.00714 0.00714 0.00612 0.00492 !

U235 0. Z3029 0.3297 0.4491 0.6514 0.6514 0.5587 0.4491

U236 0.000394 0.000566 0,00077Z 0.00112 0.00112 0.000961 0.000772

U238 0.01389 0.01988 0.02708 0.039Z7 0.03927 0.03368 0.02708

1966016284-325



7-5

METHOD OF ANALYSIS

procedure followed for analyzing the Lewis Critical Experi-

adheres closely to the general procedure used in the precritical

the Mockup Cores (see Section 6. 1). More thermal groups

as seen in a listing of the group structure, given in Table 7.6.

approximation was used in solving for the epithermal spectra

experiments, except Experiment 1, in which the B-3 approxima-

employed. For this experiment, in which the core leakage is

percent, particular care was exercised in using an accurate

the core buckling in the spectrum calculation. Special colli-

probability tables were generated for the tungsten ring configurations

Experiments 8, 9, and 10, as discussed in Section 4. 11.6.

Table 7.6

SIXTEEN-GROUP STRUCTURE USED FOR

LEWIS EXPERIMENT EIGENVALUE CALCULATIONS

Group Energy Ran_. e

1 3.68 to 14.9 MeV

2 2.02 to 3 68 ,,
3 0.907 to 2 02 "

4 0.0865 to 0 907 "

5 2.03 to 86 5 keV
6 0.0614to 2 03 "

7 2.38 to 61 4 eV

8 0.414 to 2 38 "

9 0.100 to 0.414 t,
10 0.070 to 0.100 i,

11 0.050 to 0.070 "

12 O.040 to O. 050 "

13 0. 030 to 0. 040 °'

14 0. 020 to 0. 030 "
15 0.010 to 0.020 °'
16 0.0 to 0.010 "

disadvantage factors were also calculated for these three cores.
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For Cores l through 3, one-dimensional buckling iterations in

both the diffusion approximation and transport theory, were used to ob-

tain keff. Cores 4 through I0 have two distinct radial regions. The

inner, voided region was treated by simple homogenization. For these

experiments, an axial geometric buckling was used to represent the

transverse leakage from each of the two radial regions in radial trans-

port and diffusion calculations. The grol,.pbucklings, B Z,i were cal-

culated from the equation:

i = + z(0-_7104;,tri) , (7.I)

where H is the core height and 0.7 104%tr is the extrapolation distance.

The aluminum tank walls were explicitlyrepresented in the radial cal-

culations for all experiments, whereas the tank bottom was explicitly

represented ii.:he axial calculations of only Experiments 1 through 3.

The worth of the tank bottom was calculated to be +0. I% in reactivity,

and the quoted multiplication factors contain this correction.

The validity of the geometric buckling method for representing

the axial leakage in Experiments 4 through 10 was assessed by perform-

ing transport calculations ic the axial dimension for Cores 3, 5, and 8.

The results are shown in Table 7.7, where the axial group leakages,
p.

L.I= DiBi_Pi'are compared for the two methods. Although significant

differences in group leakages occur, the total axial leakages compare

closely for all three cores.

i
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Table 7.7

AXIAL LEAKAGES/SOURCE NEUTRON

Expt. 3 Expt. 5 Expt. 8

Entire Core Inner Core Region Inner Core Region
HIU-Z35 --1650 HIU=Z35 = 865 HIU-Z35 = 436

Geometric Transport Geo .metric Transport Geometric Transport
B _-Method Method B z Method Method B z Method Method

1 4, 05-3 Z. 84-3 5.62-3 5.07=3 3.73-3 3.61-3

Z 6.51=3 4.84-3 10.32-3 9.36-3 6.80-3 6.54-3

3 6.53-3 4.91-3 11.35-3 10.03-3 7.58-3 7.07-3

4 7.96-3 6.58-3 15.05-3 13.74-3 I0.7Z-3 10.46-3

5 3.58-3 3.76-3 7.40-3 7.73-3 5.36-3 5.79-3

6 2.30-3 Z. 80-3 5.15-3 5.68-3 Z. 97-3 3.88-3

7 1.89-3 Z. 38-3 4.37-3 4, 82-3 1.89-3 2. lZ-3

Sub total O. 0328 O. 0281 O. 0593 O. 0564 O. 0391 O. 0395

8 O. 88-3 1.34-3 1, 39-3 2.71-3 1. Z3-3 1.49-3

9 1.39-3 1.90-3 2.33-3 3.23-3 0.98-3 I. 34-3

10 0.96-3 1.40-3 1.48-3 Z. 03-3 0.37-3 0.55-3

11 I. 08-3 1.56-3 1.59-3 Z. 21-3 0.35-3 0.54-3

IZ 0.63-3 0.94-3 0.91-3 1.32-3 0. 18-3 0.30-3

13 0.60-3 0.96-3 0.88-3 !. 34-3 0. 16-3 0. Z8-3

14 0. 51 =3 O. 88-3 0.74-3 1.22-3 0.17.-3 0.24-3

15 0.35-3 0.67-3 0. 55-3 0.92-3 0. 07-3 0.16-3

16 0. IZ-3 0. Z6-3 0. 18-3 0. 36-3 0.0Z-3 0.06-3

Sub total 0. 0065 0.0099 0. 0100 0. 0153 0. 0035 0. 0050

Total 0. 0393 0. 0380 0. 0693 0. 0717 0.04Z6 0. 0445

7.3 RESULTS

o.

7.3. I EXPERIMENT I i

The results for Experiment I are shown in Table 7.8. The first

value of 0.95Z for the multiplication factor resulted fro_, , diffusion cal- 1

culations in both the axial and radial directions. The -,xial leakage was

overestimated by the diffusion code. The s%me radial leakage was then

used in a transport calculation of the axial problem. The results for both

PI anisotropic scatterir_ and P3 anisotropic scattering show good agree-

merit with the expected value of I. 0.
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Table 7.8

RESULTS FOR ZPR I

Radial Core Axial Core

Method kef_f Leaka_ e Le akag e

GAZE radial 0.952 0.056 0. 421
GAZE axial

GAZE r:,dial 0.991 0. 056 0. 404

GAPLSN P1S8 axial

GAZE radial 0.996 0. 056 0.402

GAPLSN P3S8 axial

7.3.2 EXPERIMENT 2

The results of the one-dimen_i_,_.,_. Tnthesis are given in Table

7.9.

Table 7.9

RESULTS FOR ZPR 2

Radial Core Axial Core

Method keff Le akag e Leakage

GAZE radial 0.972 0. 273 0. Z16
GAZE axial

GAZE radial 0.993 0.073 0.ZOO

GAPLSN PIS8 axial

The GAZE axial calculation is closer to the GAPLSN axial cal-

culation as expected in this I0.76 in. high core.

7.3.3 EXPERIMENT 3

The results are given in Table 7. I0.
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Table 7. I0

RESULTS FOR ZPR 3

Radial Core Axial Core

Me thod _ef...f Le aka_ e Leakage

GAZE radial O. 988 O. 083 0. 041
GAZE ax,."al

GAZE radial 0.991 0.083 0.036

GAPLSN PIS4 axial

Since Experiment 3 was the first in the series to have a nominal

height of 30 in., it is of interest to compare the neutron energy spectrum

and radial flux shape for this one-region, very thermal assembly with

other 30 in. assemblies. The infinite-media spectrum for Experiment 3

is shown in Figs. 7. l and 7 2. The radial thermal (E< 2.38 :V) flux

shape is illustrated in Fig. 7.3. The thermal and fast spectra of Experi-

ment 3 are characteristic of a well-moderated assembly.

I

7.3.4 EXPERIMENT 4 _

' 1
This critical assembly was the first of the series to have a two-

region core. The assembly contained nineteen void tubes. The inner

core equivalent radius was 22.09 cm. Results of eigenva._ue calculations

are given in Table 7. l I.

Table 7. I l

RESULTS FOR ZPR 4

Radial Core Axial Core

Method kef____f Leakage Leaka_ •

GAZE radial 1. 016 0. 1321 0.0631

GAPLSN radial I. 029 0. 1272 0. 0624

1966016284-330



7-10

co
m

0

1966016284-331



7-II

0

0

1,, I J .........i I _

13)_3

1966016284-332



7-12

0
_D

1966016284-333



7-13

7. 3.5 EXPERIMENT 5

This critical assembly was the first in the series to have a whole

complement of 37 tubes and the same height (nominal 30 in. } as those

assemblies with tungsten inserts. As such it provides an endpoint for

calculation of the effect of the tungsten inserts. The results for this ex-

periment are given in Table 7. 12. Infinite media spectra for the inner

core region are shown in Figs. 7. l and 7.2, and the thermal radial flux

profile is shown in Fig. 7.3. The influence of the outer core region, or

"driver, " is apparent on the thermal flux.

Table 7. 1Z

RESULTS FOR ZPR 5

Radial Core Axial Core

Method ke f___f Le aka_ e Le aka_ e

GAZE radial 1. 024 0. 1794 0. 0822

GAPLSN radial 1. 041 0. 1721 0. 0824

]ne inclusion of a Behrens' correction (61) was studied in this

assembly. Anisotropic diffusion coefficients were derived for radial

and axial directions in the inner core region. The resultant correction

was applied to the transport cross sections and to the extrapolation

distances appearing in the calculated leakage terms. The corrections i

to each group i were made through the formulae: i

D,, -1 Zr._ (7 Z)
_ni_ I+Z_+ ( ) xp 1_1 - I + X ' ' _;
o
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and,

O

where:

_) = volume of holes/volume of material

r - hydraulic radius

k = mean free path through solid material

D = diffusion coefficient for solid material.
o

The resu/tant eigenvalue is 0.94, indicating that the axial leakage in the

voided region is overestimated by this method. The Benoist 162}'"second-

and third-order treatments gave similar results.

7.3.6 EXPERIMENT 6

The results for this Z0-in. high core, which had 37 voided tubes,

are given in the following table:

Table 7. 13

RESULTS FOR ZPR 6

Radial Core Axial Core '

Me thod kef.__f Le akaej._._. Le akag e

GAZE radial I. 024 0. 1752 0. 1442

GAPLSN Radial I. 042 0. 1674 0. 1460

7.3.7 EXPERIMENT 7

This 15-in. high core also had 37 voided tubes. Results are

shown in Table 7.14.
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Table 7. 14

RESULTS FOR ZPR 7

Radial Core Axial Core

Method ke f____f Leaka_ e Leakage

GAZE Radial 1.011 0. 1703 0. Z073

GAPLSN Radial I.020 0. 1659 0.2120

As expected, the diffusion calculations on shorter cores consis-

tentlygive eigenvalues somewhat lower than on the longer cores.

7.3.8 EXPERIMENT 8

Experiment 8 had three tungsten sleeves inserted in each tube.

The results of the eigenvalue calculations are shown in Table 7. 15.

Table 7. 15

RESULTS FOR ZPR &

Radial Core Axial Core

Method ke f___f Leakage Leakage

GAZE Radial 0.970 0.2000 0.0596 !

GAPLSN Radial 0.991 0.Z034 0.0589 :

Infinitemedia spectra are shown in Figs. 7. l and 7. Z for the inner
i

core regions of Experiment 8. The resonance absorption of the tungsten-

186 isotope is apparent at a lethargy of 13.25 in the s'-)wing-down spec-

trum. High absorption in the thermal energ 7 range is apparent in the

radial flux profile of Fig. 7.3.

A GAMBLE two-dimensional calculation was also done for Experi-

_nent 8. A comparison to the GAZE results for total capture, f._ssion,and

leakage rates is given in Table 7.16. The good agreement supports the

validity of using the one-dimensional technique.

J
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Table 7. 16

COMPARISON OF GAZE AND GAMBLE, EXPERIMENT 8

GAZE GAMBLE

Total Flux/Source Neutron 45.40 45.46

Total Captures/Source Neutron .505Z .5044

Total Fissions/Source Neutron .3988 .4023

Total Leakage/Source Neutron .09619 .09336

7.3.9 EXPERIMENT 9

This assembly had two cylindrical tungsten inserts per tube. The

analysis of Experiment 9 gave the following results:

Table 7. 17

RESULTS FOR Z_:'.. 9

Radial Core Axial Core

Method kef_.__f Leaka_ e Le akag e

GAZE Radial 0. 978 0. 1973 0. 0656

GAPLSN Radial 0. 997 0. 1950 0. 0656

7.3. 10 EXPERIMENT I0

With one cylindric,d tungsten insert per tube, and the same criti-

cal height as Experiments 8 and 9, the analysis of Experiment I0 gave,

the foHowihg results:

TabLe 7, 18

RESULTS FOR ZPR I0

Radial Gore Axial Core

Method kef_.._f Leakag • Leakag ,e

GAZE Radial 0.990 0. 1903 0. 0702

GAPLSN Radial I.004 O. 1853 0..0708
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7.4 SUMMARY OF RESULTS

A summary tabulation of all the results for all the experiments is

given in Table 7. 19. Neutron balances are exhibited in Tables 7.20

through 7.2.3. The balance tables are grouped into sets according to the

parameters varied, as indicated in Section 7. 1. They illustrate the rela-

tive competition of capture, fission, and leakage in the neutron balance.

All tables are normalized to one source neutron.

Table 7. 19

SUMMARY OF RESULTS

Expt. Critical D._ _ion Transport

No. NH/Nu-z35 Ht., in. Tubes Calc...(GA.ZE) Calc. (GAPLSN)

1 15Z. 9 5.44 0 O.952 O. 991 PISs

O. 996 P3S8

2 995.0 I0.76 0 O.972 O.993 PISs

3 1650.0 29.95 0 O.988 O.991 PIS4

4 1240.0 zg. 69 19 I.016 I.ozgaPls8

5 865.0 Z9.66 37 I.024 I.041aPlS 8

6 654.0 20. Z5 37 I.024 I.042 PIS8

7 436.0 15. Z4 37 I.Ol I I.020 PIS8

8 436.0 29.74 37(3W) b O.970 O.991 PIS8

9 509.0 zg. 60 37(ZW) b O.978 O.997 PIS8

I0 634.0 30. Z8 37(IW) b O.990 I.004 PIS8

aExtrapolated from nearly converged problems

b(3w) indicates three tungsten cylindrical inserts, etc.
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Table 7. Z0

NEUTRON BALANCE

Parameter.,, V.,'i,'d: NI]/Nu_zj 5, lh.ight

l_ar,,meters Fixed: N,,. of "F,|b(,s (No,e)

Experiment I Experime,t Z Experiment 3
Ht -- 5.44 in. Ht =. 10.76 m. Ht = Z9.95 in.

Nuclide _ Vis.__.[s. C,l_ . Vis_.__ss. Gap. Fis..__[s.

H 3. 668-Z (1) 2. 388- 1 3. 928- 1

O 2.Z35-3 2.745-3 3.045-3

F I.566-4 4.Z76-5 3.371-5

AI 0.0 0.0 0.0

U-Z34 I. 855-3 3.848-5 !.059-3 7. 170-6 9.778-4 4.708-6

U-Z35 8.876-Z 4.075-I 7. 503-Z 4.085- I 7. 383-Z 4.065-I

U-Z36 9.606-5 Z.8Z6-6 Z.860-5 5.255-7 Z.Z51-5 3.472-7

U-Z38 Z.608-3 5.155-5 7. 196-4 9.674-6 5.360-4 6.377-6

Core Totals 1.3Z4-1 4. 076-1 3. 184-1 4.085-I 4.71Z-1 4.065-1

Core Captures 1. ]Z4-1 3. 184-1 4.71Z-1

Core Fissions 4. 076- 1 4. 085- 1 4. 065- l

Gore Rad. Lkg. 5.623-2 7.330-Z 8.340-Z

Core Ax. Lkg. 4.033-1 1.99Z-1 .3.58Z-_

0.9995 (2) 0.9994 (z) 0.9969

(1)Multiplicative powers of ten are denoted in this and subsequent tables by
a sign and number; thus, 3.0-Z indicates 3.0 x I0 "Z.

(2}These neutron balance tables were constructed from the final GAPL_N

edit for the axial direction. Absorptions in the reflector are thu. not

explicitly represented.

I
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Table 7,Z 1

NEUTRON BALANCE

Par'_meters Varied: NH/Nu_235, Voided Tubee

Parameters Fixed: Height

Experiment 3 Experiment 4 Experiment 5
No Voids 19 Void Tubes 37 Void Tubes

Nuc Iide Cap. Fiss____. Cap. Fiss__.__.Cap, Fi.._ss_.

H 3. 928- l 3. 010- 1 2. 137-1

O 3. 045-3 2. 772-3 2. 352-3

F 3. 371-5 3. 777-5 4. 344-5

Al 0.0 9. 968-3 I. 683-2

U-234 9.778-4 4.708-6 I. 033-3 5. 786-6 1. 107-3 7. 569-6

U-235 7.383-2 4.065-1 7. 519-2 4.133-1 7. 750-2 4.205-1

U-236 2,251-5 3.472-7 2. 582-5 4. 252-7 3. 109-5 5. 512-7

U-238 5,360-4 6. 377-6 6. 309-4 7. 790-6 7. 842-4 1. 001-5

Core Totals 4.712-1 4. 065-1 3.907-1 4. 133-1 3,123-1 4.205-1

Refl. H 7.390-2 I.022-I I.387-I

Refl. O 2.491-4 3.936-4 5.243-4

AI Vessel 4. 041-3 5. 538-3 6.620-3

Total Captures 5. 494- I 4,988- I 4. 582- I

Total Fissions 4.065-1 4. 133-I 4.205-I

Tot. Rad. Lkg. 9.779-3 1.240-2 1.757-2 T

Tot. Ax. Li_. 4.126-2 7.180-2 1.016°1
{

1o0069 0. 9963 0. 9979

Totals do not add to 1. 0000 due to the approximate nature of the neutron
current calculations in the GAZE diffusion code. This is reflected in a

slight error in the radial leakage rates and hence the neutron balance.

l
_I _,
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Table 7. ZZ

NEUTRON BALANCE

Parameters Varied: NH/Nu_235, Height

Parameters Fixed: No. of Voided Tubes (37)

Experiment 5 Experiment 6 Experiment 7
Ht = 29.66 in. Ht = 20.25 in. Ht = 15.24 in.

Nuclide Cap. Fiss__ _ Fis s_____. Cap. Fis s.

H Z. 137- 1 1. 562-1 1. 038-1

O 2. 352-3 2. 188-3 Z.069-3

F 4. 344-5 5.078-5 6. 266-5

A1 1. 683-2 1. 178-2 7. 338-3

U-234 1.107-3 7. 569-6 1.167-3 9.723-6 1.235-3 1.317-5

U-235 7.750-2 4.205-I 7.833-2 4. 189-I 7.746-2 4.045-I

U-236 3. 109-5 5.51Z-7 3.642-5 7. 080-7 4.416-5 9. 625-7

U-238 7. 842-4 I.00l-5 9. 405-4 1.281-5 I.166-3 1.741-5

Gore Iotals 3. 123-1 4. 205-1 2. 507-1 4. 189-1 1. _32-1 4. 045-1

Refl. H 1.387-I 1.319-I 1.182-1

Refl. O 5.243-4 5. 169-4 5.256-4

AI Vessel 6.620-3 5.712-3 4.642-3

Total Captures 4. 582-1 £. 889-1 3. 166-1

Total Fissions 4. 205-1 4. 189-1 4. 045-1

Tot. Rad. Lkg. I.757-2,, I.698-2 I.576--

Tot..Ax. Lkg. 1.016-1 1.781-1 2.593-1

O. 9979 I. 0029 O. 9962 l
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Experiments 1, 2, and 3 ehow good agreement with experimental

results and indicate that a leakage iteration technique gives good results

even in very small cores. The eigenvalues for Experiments 3, 4, and 5

show a significant trend toward overesti,nation of the eigenvalue as the

number of voided tubes increases. The eigenvalues for Experiments 5,

6, and 7 are high The eigenvalues for Experiments 8, 9, and i0 show

good agreement with experiment, indicating only a minor trend.

In all calculations, the atom densities for natural tungsten was

assumed to be 0. 0600 atom/b-cm, corresponding to a density of 95% that

of theoretical. The density is inconsistent with the weights quoted in

Table 7.3 for a 0.0Z0 in. thick sleeve; the average atom density ralcu-

lated from these weights is 0. 0635 atom/b-cm.

The apparently higher density may be due to a slightly larger wall

thickness in the tungsten tubes, or a higher density than 95% of theoretical.

If it is consistent and real, the effect on the eigenvalue calculations would

be not more than that shown in Table 7. Z4.

Table 7. Z4

MAXIMUM ESTIMATED EFFECT ON EIGENVALUE OF USING

A TUNGSTEN DENSITY OF 0.0635 ATOM/b-GM ._

Experiment Ak/._.._k _

8 - O. OIZ

9 - O. 010 ;_
10 - 0. 007 _

7.5 RECALCULATION OF EXPERIMENTS 5 AND I0 1

The most striking comparison in the results summarized by

Table 7. 19 is that between Experiments 5 and I0. Differing in configura-

tion only by the presence of a Z0-mil ring of tungsten within the void in

Experiment 10, the calculated multiplication factors are separated by

approximately 4%. This apparent anomaly prompted a re-examination

of these two experiments. The same method of analysis was used; how-

ever, the following changes were incorporated in the recalculation:

I. The final set of tables relating atom densities to solution
densities released on 1/7/65(63)were used. The revised

atom densities corrected for temperature are listed in
Table 7.Z5.
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Table 7.25

REVISED HOMOGENIZED AI_OM DENSITIES FOR

LEWIS CRITICAL EXPERIMENTS NOS. 5 AND 10

(Atoms/b-cm Multiplied by 104)

REGION OF FULL DENSITY SOLUTION

Nuclide Experiment No. 5 Experiment No. 10

H 664. 9 663.9

4, 334. 1 334. 2

F 1. 622 2.203

U TM 0.00829 0. 01124

U 235 0.7559 I. 0265

U 236 0.00129 0.00177

U 238 0.0551 0. 0747

REGION OF VOIDED TUBES

Nuclide Experiment No. 5 Experiment No. I0

H 285.3 284. 9

4, 143.35 143.4 ._

F O. 6959 O. 9452

AI 59.42 59.42
182

W 0. 0 I.538
183

W O. 0 O. 8391
184

W O. 0 I. 783

W 186 0.0 I.655

U TM O. 00356 O. 00482

U 235 O. 3243 O. 4404

UTM O. 000553 O. 000759

U 238 O. 02363 O. 03205
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2. The value of 0. 0635 atom/b-cm, obtained from the

measured tungsten ring weights, was used for the

atom density of tungsten.

3. Revised values of the bucklings, obtained from the pre-
vious final diffusion calculations for each experiment,
were used in the calculation o_ the spectrum. These

bucklings are listed in Table 7.26.

4. The P-I source terms to the GATHER code were pre-
viously incorrect due to an error in the (AM code.
This error gave rise to fallacious thermal current
spectra and thermal transport cross sections. In the

present calculations source terms derived from a 1/E

slowing-down flux were used.

The results of the calculatious __e given in Table 7.27. The mul-

tiplication constants and core leakages are tabulated for each experiment,

comparing diffusion and transport calculations. The transport calculat_.ons

were i,_completely converged (hence leakage fractions are not g'iven for

the GAPLSN calculations); however, convergence was of sufficient uni-

formity to permit extrapolation to the converged eigenvalue with a high

degree of confidence. Complete neutron balances from the GAZE diffusion

calculations are given in Table 7.28.

Table 7.26

BUCKLING USED IN SPECTRUM CALCULATIONS FOR

LEWIS EXPERIMENTS NOS. 5 AND I0

(B2 in cm "2)

Inner Core Outer Core

Fast Thermal Fast Thermal

Experiment 5 0.00226 0.00202 0.01762 0.0

Experiment 10 0.00163 0.00063 0.02303 0..0
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Table 7.27

RESULTS OF RECALCULATION OF

EXPERIMENTS NOS. 5 AND I0

Radial Core Leakage Axial Core Leakage
keff Fast Thermal Fast Thermal

Experiment No. 5

GAZE 1.015 0. 175 - 0 002 0.0761 0.0138

GAPLSN I.025 ..............

Experiment No. 10

GAZE 0. 955 0.Z03 - 0. 0108 0. 0641 0.0090

GAPLSN 0.971 ..............

7.6 DISCUSSION AND CONCLUSIONS

The small homogeneous Lewis cores of Experiments 1, 2, and 3

are predicted well by one-dimensional transport theory. Diffusion theory

gives errors as high as 5% in multiplication. Special care is necessary

in considering the effects of over-all core leakage on the cross sections.

The results of Experiments 3, 4, and 5 indicate that the homogenization

procedure is inadequate for treating the streaming problem associated

with void introduction, with the results demonstrating a trend toward

greater overestimation of the multiplication factor as the number of voids

is increased. The application of Behrens and Benoist corrections for

anisotropic streaming highly overestimates the magnitude of the axial

leakage, and thus these methods appear to be inadequate for handling this

problem. The results of Experiment 5 and 6 suggest that the error in the

predicted multiplication factor is insensitive to the ratio of void radius to

core height, although the result of Experiment 7 indicates an apparent in-

verse relationship. Although the results for Experiments 8, 9, and 10

demonstrate good agreement with experiment, the question arises as to

why the presence of a thin tungsten ring inside the voids apparently elim-

inates the streaming problem associated with the purely voided tubes.
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Table 7.28

NEUTRON BALANCE FROM RECALCULATION

LEWIS _.XPERIMENT NO. 5

Nuclide Capture Fission

H 2.159-I

2.382-3

F 4. 308- 5
AI* 2. 368-2
U-234 1. 097-3 7. 431-6
U-235 7. 692-2 4. 177-1

U-236 3. 043-5 5. 397-7
U-238 9. 322-4 I. 086-5

Core Total 3. 235- 1 4. 177- l

Reflector H I.391- I

Reflector O 5.397-4

Total Capture 4.606-1
Total Fission 4.177-l

Fast Radial Leakage 8.518-3
Thermal Radial Leakage 8. 776-3
Fast Axial Leakage 8. 294-2
Thermal Axial Leakage 1. 859-2

0. 9971

LEWIS EXPERIMENT NO. 10

Nuclide Capture Fie sion

H 1. 496-I

¢ 2.299- 3
F 5.058-5
AI* 1. 632-2
W 182 2.733-2
WTM 1. 162-2
W 184 2. 999-3
W.186 5.512-2_234
_U_235 I.121-3 9. 753-6

U236 7.391-2 3. 930-1

U238 3. 655-5 7. 156-71. 124-3 1. 421-5
Core Total 3.415-1 3. 930-1

Reflector H 1. 559- l
Reflector O 6. 261-4

Total Capture 4. 980-1
Total Fission 3.930-1

Fast Radial Leakage 1. 004-2
Thermal Radial Leakage 1.013-2
,Fast Axial Leakage 7. 190-2
Thermal Axial Leakage 1. 395-2 !

0. 9970

Including aluminum vessel.
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The unusually large spread between transport and diffusion theory

in the calculated values of the multiplication factors for Experiments 4

through ]0 is due to the two-region nature of these cores. The material

discontinuities, where diffusion theory breaks down, are in an exception-

ally high worth region of the cores. The effect is demonstrated in Fig.

7.4, where the calculated radial fission source distribution is plotted.

Both the GAZE and GAPLSN sou:-.:e densities are normalized to make the

total _bsorptions plus leakage equal to unity, and, thus making the inte-

gral under each curve equal to the multiplication factor.

The most striking result of these calculations is the apparent elim-

ination of neutron streaming by the introduction of thin tungsten rings into

the voids. The best demonstration of this effect is afforded by a compari-

son between Experiments 5 and 10, which differ principally by the exis-

tence of a 20-mil tungsten ring in the voids of Experiment 10. The initial

results, given in Table 7. 19, indicate a spread in kef f of approximately

4% between the two experiments. The results of recalculations, given

in Table 7. Z7, indicate an even larger spread of approximately 5% and i

this difference is apparently caused by neutron streaming in Experiment 5.

The recalculations also indicate a general decrease in kef f of 1.5

to 2% for both experiments. The principal reasons for this change are the

increased tungsten atom densities and the decreased U 235 densities in the

solution. (The error in the previous diffusion coefficients is reflected

principally by the diffusion theory results. ) The recalculation of Experi-

ment 10 suggests that the previous agreement with experiment for Experi-

ments 8, 9, and 10 was fortuitous.

It is concluded that the present treatment of the voids by homogeni-

zation is inadequate. A more sophisticated treatment of the axial leakage,

involving two-dimensional transport calculations of the voided cells, was

initiated at General Atomic and is being pursued at the Lewis Research

Center.
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VIII. DISCUSSION OF RESULTS

8. 1 REFINED CALCULATION OF CRITICALITY

As shown in Section 6. 1, the refined calculation of the 3.0-in.

water-reflected core gives an estimate for kef f which is a considerable

improvement above the estimate obtained from the precritical calcula-

tions. In this section the components of the refined calculation are dis-

cussed individually, with an estimate of the effect on reactivity of incor-

porating each component separately.

8. 1. I TWO-DIMENSIONAL CALCULATION OF THE UNIT CELL
THERMAL DISADVANTAGE FACTORS

A comparison of the thermal U 235 disadvantage factors obtained

in one-dimensional and two-dimensional calculations is shown in Table

8. 1. In order to examine the gap effect, the two-dimensional calculation

omitted the cadmium in the cell. It can be seen that neutron streaming

into the 1/8 in. gap increases the average thermal flux in the fuel. Analy-

sis o£the results indicates that the largest flux increase occurs near the

end of fuel ring D, as expected. It is estimated that the effect on reac-

tivity of including the gap in the disadvantage factor calculation is approx-

imately +0.7%.

_It should be noted that in the complete calculation the effects of the
individual components are not necessarily separable.

8-I

i
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Table 8. 1

COMPARISON OF ONE- AND TWO-DIMENSIONAL

DISADVANTAGE FACTOR CALCULATIONS

(CADMIUM OMITTED)

Thermal Group U 235 Disadvantage Factors
ID 2D

1 0. 9371 0. 9369

J
2 0. 7634 0.7833

3 0. 6238 0.6503 1

4 O. 5152 O. 5464

5 0.3313 0.3715

As discussed in Section 4. 10.2, the cadmium was represented as

a thin ring at the outer boundary of the cell in the two-dimensional ca]-

culation_ of the unit cell thermal disadvantage factors. The choice of

this scheme for representing the cadmium was based upon the results of

the two-dimensional cadmium disadvantage factor calculations discussed

in Section 4. 10.2. In th_se calculations, the outer fuel ring was repre-

sented explicitly,whereas the inner rings were homogenized along with
!

the other cell constituents inside the outer ring. Although these calcula-

tions were not expected to yield accurate fuel disadvantage factors, the 1

relative change in fuel disadvantage factors with cadmium density should

be accurately predicted. The U z35 disadvantage factors for the five

thermal group structure are shown in Fig. 8. I as a function of Cd If3

conc entration.

The fuel disadvantage factors were computed with three different

cadmium representations - the first with no cadmium, the second with

cadmium homogenized uniformly throughout the moderator, and the

third with cadmium represented as a thin ring at the cell outer boundary.

The percentage changes in the calculated disadvantage factors from the

case with no cadmium are given in Columns 2 and 3 of Table 8.2.
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These percentage changes are to be compared with the change given in

Column 4, which was obtained by extrapolating the Z DXY results to zero

cadmium concentration.

It is apparent from Table 8.2 that the representation of the cad-

mium as a thin annular ring at the cell boundary gives more valid re-

sults than when the cadmium i_ homogenized in the moderator. It is

estimated that the effect on reactivity of this cadmium representation in

the calculation of unit cell thermal disadvantage factors is approximately

+o.3%.

Table 8.2

CHANGE IN U Z35 DISADVANTAGE FACTORS FOR
THREE CADMIUM REPRESENTATIONS

Cd, Homog. Gd, inThermal
in Mod. Thin Ring ZDXY

Energy

Gp. 6gi 5gi 5gi

i o. 0% o. 0% o. 0%

Z -0. I% +0.5% +0.7% :

3 -o. 1% +o. 6% +1. z%

4 -0. 1% +0.8% +1.5%

5 -o.I% +l.7% +z.5%

8.1.2 TWO-DIMENSIONAL CALCULATION OF THE CADMIUM
4THERMAL DISADVANTAGE FACTORS

A comparison of the cadmium thermal disadvantage factors ob-

tained in the two-dimensional and one-dimensional, tube-centered cell,

calculations is presented in Table 8.3. The results are shown for a cad-

mium concentration of 9.0 x 10 -6 atorn/b-cm, pertinent to th_ 3.0-in.

pitch, water-reflected core. The one-dimensional results have been

corrected for two-dimensional effects in the manner outlined in Section

4. 10. 1. It can be seen that the one-dimensional, tube-centered cell, cal-

culation overestimates the effect of cadmium poison in the core. It is
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estimated that the effect of replacing the one-dimens_.onal cadmium dis-

advantage factors with those obtained in the two-dimensional calculation

is +0.5% in :eactivity.

Table 8.3

COMPARISON OF ONE- AND TWO-DIMENSIONAL

CADMIUM DISADVANTAGE FACmOR RESULTS

Thermal Group I_.DD 2DD

1 1. 193 1. 143

2 1. 377 1. 328

3 1.710 1. 603

4 1. 973 1. 820

5 2. 392 2.14Z

8. 1.3 TREATMENT OF THE INTERSTITIAL MATERIAL IN RESONANCE

ABSORPTION CALCULATIONS

The effect of including interstitial aluminum in the resonance cal-

culation on the effective absorption cross sections of the tungsten iso-

topes and U z38 is shown in Table 8.4. The effect on reactivity is approx- '!

imately -0.9%. i

Table 8.4

EFFECTIVE ABSORPTION CROSS SECTIONS
IN THE 3.0-1N. PITCH CORE J

FROM Z. 38 TO 61.4 eV

(_a(barns) Oa (barns)
Interstitial Aluminum Interstitial Aluminum

Neglected Considered

W 18Z 19.28 19.96

W 183 27.36 Z8.95

W TM 0. 093 0. 093

W 186 20.35 g0.48

U 238 3.71 4.03
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8.1.4 RESONANCE INTERFERENCE

The effect of tungsten resonance overlap on the effective absorp-

tion cross sections of W 18Z W 183, and W 186, in the energy range from

2.38 to 61.4 eV is given in Table 8.5. For calculational simplicity, the

cross sections have been averaged over I/E spectra. The magnitude of

the effect should be diminished when the cross sections are averaged

over realistic core spectra. The most significant overlap effect occurs

between the 18.83 eV level of W 186 and the 21. Z eV level of W 182, giving
-- 18Z

rise to a 9.3_0 decrease ina for W
a

The effect of U z38 overlap on the tungsten nuclides was calculated

by homogenizing the U z38 ring into the tungsten rings. The effective ab-

sorption cross sections of the tungsten isotopes with and without the U Z58

homogenized into the rings are compared in Table 8.6. It is seen that

WI8Z is affected to the greatest extent by overlap from U Z38. Compari-

son of the level structure of U Z38 with that of tungsten indicates the pri-

mary overlap is between the 21.0 eV level of U Z38 and the Zl.Z eV level
18Z

6f W

Table 8.5

EFFECTIVE ABSORPTION CROSS SECTIONS OF THE

TUNGSTEN ISOTOPES WITH AND WITHOUT

RESONANCE OVERLAP; I/E SPECTRUM

(; (barns)
a

Nuclide (no overlap.) (with overlap) _0 Dev.

W 18Z 2Z. 89 Zl. 41 -6.5_0

W 183 Z6.2.7 Zb. 96 -1, Z%

W 186 2Z. 0Z 19.97 -9.3%
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Table 8.6

EFFECTIVE ABSORPTION CROSS SECTIONS OF

THE TUNGSTEN ISOTOPES WITH AND WITHOUT

OVERLAP FROM uZ38; I/E SPECTRUM

a (barns)
a

Overlap Between Overlap of U Z38 on

Nuclide Tungsten Isotopes Only Tungsten Included _/oDev.

W 18z Zl. 41 19.90 -7. Ig0
183

W 25.96 25.35 -Z. 3%

W 186 19.97 18.98 -5.0%

It is estimated that the. effects of resonance overlap on the tung-

sten resonances accounts for +0.4% reactivity. The effectsof' tungsten

resonance overlap on the U 238 resonances has been ignored;because the.

relative spatial position of the U Z38 ring and the tungsten rings suggests

that this effect is insignificant.

8. 1.5 U z35 RESONANCE CALCULATION

The results of the resonance calculation for U z35 in the 3.0 in.

pitch core indicate a significantdegree of U z35 self-shielding within the

fuel rings. The extent of the resonance self-shielding can be appreciated

by referring to Table 8.7, where epitherrnal one-group averages of in-

finitedilution U z35 cross sections are compared with those obtained from

the self-shielding calculation. The first section of Table 8.7 presents

(7c, af, and _.averaged over I/E spectra from Z.38 eV to 14.9 MeV.

The actual effect of the U z35 resonance treatment on the charac-

teristics of the 3.0-in. pitch, water-reflected core was obtained by per-

forming a GAM calculation incorporating the U Z35 s_If-shielded cross

sections from Z. 38 eV to 961 eV. In the second section of Table 8.7, the

infinite dilution and self-shielded values of _c' cr,r and a averaged over

the actual core spectrum are compared.

1966016284-357



8-8

Despite the significant depression in the epithermal capture cross

section and the diminution of _-', the effect of the U 235 resonance calcula-

tion is negligible in terms of reactivit 7, which is decreased by -0. l°/0. Be-

cause 0f_ the large magnitude of nonfissile absorptions in the epithermal

region of the spectrum, these cores a_-e considerably more sensitive to

the magnitude of the epithermal fission cross section itself than to ¢x.

The calculated distribution of fissions, however, is altered significantl 7

b7 the consideration of self-shielding in U 235. The ratio of total-to-

thermal (0 to 2.38 eV) fissions, which is 1.30 when infinite dilution U 235

cross sections are used, diminishes to a value of 1.23 when U 235 self-

shielding is included.

Table 8.7

COMPARISON OF U 235 INFINITE DILUTION
CROSS SECTIONS WITH RESONANCE

SELF-SHIELDED CROSS SECTIONS
Z.38 EV TO 14.9 MEV '

Infinite Dilution Resonance Self-Shielded i

Averaged Over I/E Spectrum

(_ barns 8.48 5.81
c

_¢ barns 12.22 9.20

a 0.694 0.632

Averaged Over GAM 3.0 in. Core Spectrum

u barns 3.92 2.90
C

U_ barns 6.47 5.28

0. 607 0. 549
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8. 1.6 TWO-REGION RESONANCE CALCULATION

A comparison of the results of a one- and two-region resonance

calculation is given in Table 8.8 for the natural tt, ngsten mixture in the

3.0-in. pitch core. The effect, as seen in the table, is substantial. The

largest change occurs in W 182, where the two-region calculation gives

a 32% increase in _a" Most of this increase is derived from the

21. Z eV level, which is adjacent to the 18.8 eV level of W 186. Figure

8. Z illustrates the deviation from I/E of the moderator flux from 17.6

to 2Z. 6 eV. Despite the significant deviation from I/E in the moderator,

it is not the relaxation of the I/E approximation in the solution of Eqs.

4. 18 and 4.19 that gives rise to the effect. This is verified in Fig. 8.3,

where it is seen that the absorber flux is predicted quite well in the one-

region calculation. It is the application of the two-region, flux-volume

weighting to the cross section, given by Eq. 4.20, which causes the in-

crease shown in Table 8.8. i

Table 8.8 I

-' EFFECTIVE ABSORPTION CROSS SECTIONS OF THE I
TUNGSTEN ISOTOPES FROM Z. 38 TO 61.4 EV

OBTAINED FROM ONE- AND TWO-REGION i
CALCULATIONS; 3.0-IN. PITCH CORE SPECTRUM

(barns)
--a

One -Reg ion Tw o-Reg ion

Nuclide Calculation Calculation % De.__.__v.

W 18Z 18.3Z Z4. IZ +31.7%

W 183 Z7.Z8 Z9.98 + 9.9%

W 186 18.65 Z3.70 +Z7. 1%

A rough estimate of the effect of the two-region resonance cal-

culation on the reactivity of the 3.0-in. pitch, water-reflected core is

-g. 0°/0. However, as discussed in Section 4. l 1.5, consideration of the
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m

effect on a exclusively is inadequate. Moderator nuclides are also sub-a

ject to cell flux fine-structure considerations in the resonance region of

the spectrum. Epithermal advantage factors in the GAM fine groups for

the tungsten resonance calculation discussed above are given in Table

8.9. These numbers are enhanced when all constituents of the absorber

region are included in the calculation. The principal effect of zhese ad-

vantage factors is to increase the extent of elastic downscattering, which,

for the 3.0-in. pitch core almost exactly compensates for the effect on a
a

Table 8.9

EPITHER_AL ADVANTAGE FACTORS

FROM TUNGSTEN

TWO-REGION CALCULATION

W.
GAM Group Energy Range (eV)

80 61.4 to 47.8 I.016

81 47.8 to 37.3 r.. 048"
82 37.3 to 29.0 1. 005

83 29.0 to 22.6 1. 076
84 22.6 to 17.6 1. 451
85 17.6 to 13.7 1. 034
86 13.7 to 10.7 1. 013
87 I0.7 to 8.3 1.010

88 8.3 to 6.5 1.073

89 6.5 to 5.0 I.012

90 5.0 to 3.9 I.187

91 3.9 to 3.1 1.043
92 3.1 to g.38 1.012

8. I. 7 TWO-DIMENSIONAL DIFFUSION CALCULATION

A two-dimensional diffusion calculation, rather than the conven-

tional one-dimensional buckling iteration procedure, as seen in Table

6.4, contributes approximately +0.7°I0 in computed reactivity.

1966016284-362



8-13

8. I. 8 ESTIMATION OF THE EFFECT OF APPROXIMATIONS IN THE

REFINED CALCULATION

There are several approximations which are still inherent in the

refined calculation of the 3.0-in. pitch, water-reflected core. A cursory

examination of several second order effects, which are discussed in this

section, indicates that they are slightly on the positive side in reactivity.

It is assumed that other approximations, which have not been investigated

by virtue of tirni limitations or oversight, are also of second orc_r and
\

are compensator_.

The ten-group structure, described in Table 6. I, has been used

for all criticality calculations. The group structure was chosen on the

basis of the following considerations. The upper three groups encompass

nearly all of the leakage. The fourth group includes absorptions in the

unresolved resonance region and a portion of the resolved resonance re-

gion, and the fifth group encompasse3 most of the absorptions in the re-

solved resonance region. A thermal cutoff of Z.38 eVwas chosen as

the upper bound for significant upsc&ttering in the moderator. The

bottom four groups divide the thermal absorptions into roughly equal

portions. Ten groups ie the maximum nu,_ber feasible in the two-dimen-

sional calculations. The effect of a twenty-group structure, in which

each of the former ten groups is split into two groups of equal lethargy

width, was investigated for the 3.0 in. pitch, water-reflected core. The

calculation indicated a +0. lZ5% increase in computed reactivity.

The annular ring representation, as discussed in Section 8. I. l,

is the most adequate R-Z representation of the effect of the cadmium on

the disadvantage factors of the other constituents of the unit cell. How-

ever, as demonstrated in Table 8. Z, this representation only accounts

for approximately two-thirds of the entire effect. It is estimated that a

correct representation would account for an additional +0. I% in reac-

tivity.
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The core disadvantage factors for cadmium have been used for

the cadmium in the axial reflector_. This is a poor approximation,

since there is no fuel influence on the thermal fin_-structure in the axial

reflector. The error associated with this approximation has been inves-

tigated by repeating the diffusion calculations of the 3.0 in. pitch, water-

reflected core with the cadmium in the reflector omitted altogether. The

results of this calculation indicate an increase in reactivity of +0.2_/0.

Since it is estimated that the effect of omitting fuel in the calculation is

to decrease the magnitude of the cadmium disadvantage factors by about

50%, the correct representation would be worth approximately +0. I% in

reactivity.

The cylindrical equivalence principle, discussed in Section 4. IJ._l,

is quite adequate for computing the co!lision probabilities in the fiat

source approximation of the annular ring absorbers in the fuel element.

The single depleted uranium ring exhibits the only sig._.ificant deviation

between collision probabi_i_ies evaluated by transport c&Iculations, as

discussed in Section 4.4.5, and an _:valuation by the equivalent cylinder

method. The effect of t' deviation has been evaluat, e6 _+nd the results

indicate that the more correct treatment would contri]_te +0.05_ in

reactivity.

The effect of resonance overlap of U Z38 o,_, t_:ngsten was tkken

into account by homogenizing the depleted uraniu_ ring into the tungsten

rings. This representation is a crude approximation, since there is

considerak_le spatial separation between the tungsten and U 238 in the fuel

element, and it is expected that U238 homogenization underestimates the

overlap eHect because the U Z38 ring acts as a filter. In order to examine

this approximation, a simulation of the three-region cell was accomplished

by a synthesis of the U 238 ring flux in the moderator region of a GAROL

calculation (the GAROL code is restricted to a two-region treatment).

The U TM ring flux was obtained first in a calculation in which the U 238
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ring is represented as the absorber region in a conventional two-region

calculation. This flux is synthesized in the moderator region of a second

two-re_ion calculation, in which the tungsten nuclides are represented

in the absorber region, by assuming the following cross section in a large

moderator zone of mass unity:

l

at<El =as(E) = E Z38(E) , (8.I)

2 , _ U238where _0 381Ej is the ring flux obtained in the first calculation,

The results of this calculation, which is expected to adequately

represent the tungsten ring flux in a U238-filtered spectrum, are given

in Table 8. 10. The effective absorption cross sections of the tungsten

nuclides (_.38 to 61.4 eV), obtained with U 238 overlap computed by the

homogenization method _see Table 8.6) are compared with the results

of the method described in this section. As expected, the homogeniza-

tion procedure provides an underestimation of the overlap effect, It is

estimated that the additional overlap computed by the U238-filtered spec-

trum melhod is werth approximate!y +0. I% in reactivity.

Table 8. 10

EFFECTIVE ABSORPTION CROSS SECTIONS OF THE

TUNGSTEN ISOTOPES WITH U 238 OVERLAP; I/E SPECTRUM

Ho mog e nization U 23 8. Filte r ed
Nuclide Method Spectrum Meth¢ _ % Dev.

W 182 19.90 19.06 -4.2%

W 183 25.35 24. P9 -I. 8%

W184 18.95 18.50 -2.4%
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It is assumed in the cell calculations that a repeating array of

identical cells exists. This assumption clearly breaks down for the outer

ring of fuel elements, where two or more of the six cells surrounding

each element in a repeating hexagonal lattice are absent. A crude esti-

mate of the effect of this approximation was obtained in the following

manner. The white boundary condition, used in the conventional cell

calculations, was replaced by five inches of water at the outer boundary

of the 3.0-in. pitch unit cell. The cell disadvantage factors obtained in

this configuration were used for the outer ring of cells in a complete

one-dimensional analysis of the 3.0-in. pitch, water-reflected core.

High energy and thermal disadvantage factors for hydrogen and

U Z35 obtained in this isolated cell treatment are compared with those

obtained in the conventional one-dimensional repeating array treatment

in Table 8. 11. The result of the complete core calculation indicates a

decrease in the computed value of kef f of -0.48°/0. Most of the influence

on keff arises from enhanced high energy leakage from the outer ring of

fuel elements; this could be predicted by noting the significant change in

, the high energy disadvantage factors shown in Table 8. 1I. Since less i

than three, on the average, of the adjoining cells are absent at the outer

ring of fuel elements, itis estimated from this calculation that an exact

treatment of the boundary condition would lead to a calculated reactivity

effect of approximately -0. Z_0.

Itis feltthat the thermal cross sections of the tungsten isotopes

, are adequately known. However, there may exist some uncertainties in

Bogart(Sg )the eipthermal region of the spectrum. Shook and found good

agreement between experiment and theory for the effective resonance
186

integrals of all the tungsten isotopes except W . Assuming that the

experimental results are correct, the calculated resonance integral for
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W 186 at a value of _TM_, I (corresponding to the tungsten in the fuel

element) is approximately 20% high. Decreasing the epithermal captures

in W 186 by this amount gives r_se to a +0.3% enhancement in the calcu-

lated reactivity.

Table 8. I I

COMPARISON OF DISADVANTAGE FACTORS OBTAINED FOR

ISOLATED CELL AND REPEATING ARRAY

Hydrogen U 235

Isolated Repeating Isolated Repeating

Gp. EnerGy Range Cell Array Cell Array ....

1 14.9 to 2.73 MeV 0. 622 O. 904 1. 331 1.08?

2 2.73 to . 50 MeV O. 638 0.896 1. 303 1. 086
3 .50 MeV to 67.4 keV 0.770 0.939 1. 190 1. 048

6 2.38 to . 414 eV 1. 077 1. 074 0. 936 0. 938
7 .414 to . 090 eV 1. 332 1. 312 0. 756 0.757
8 .090 to . 050 eV I. 539 I. 500 0. 617 0. 626

9 .050 to . 030 eV I. 704 I. 654 0.508 0.521
l0 .030 to 0.0 eV I. 998 I. 936 0.322 0. 339

A discussion of the infinite dilution U 235 epithermal cross

sections was given in Section 5.2. It was noted that normalization of the

UZ35 epithermal cross sections (36) to recently measured integral values i

of If and _ leads to as much as +I. 5% increase in calculated reactivity i

for the 3.0-in. pitch, water-reflected core. For the refined calculation, i

UZ35which incorporates resonance self-shielded epithermal cross sec-

tions, an estimate for the effect of the normalization, If = 276 barns and _'

= 0.48, is +I. 0% in reactivity. This effect will remain uncertain until i

the discrepancy between the integral and differential U TM epithermal

cross section measurements is resolved,

Although a refined calculation has not been performed for the

2. ?-in. pitch or beryllium-reflected cores, it is reasonable to conclude

that the enhancement in k of the refined calculation for the 3.0-in. pitch,
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water-reflected core would carry over to the other cores. This conclu-

sion is based upon the fact that the leakage fractions from the one-dimen-

sional diffusion calculations are nearly identical for the precritical and

refined analyses. The enhancement in kef f obtained in the two-dimensional

diffusion calculation may not carry over to the other cores to the same ex-

tent, since the core leakages are involved.

The refined analysis involves arduous and time-consuming con-

stituen _. calculations. This procedure is not recommended for routine

survey calculations of tungsten water-moderated reactor cores. Depend-

ing upon the extent to which the refinements are incorporated into the

model, predictions for kef f may range from three percent low to one per-

cent high. The complexity of these cores lies in their extreme hetero-

geneity combined with very heavy loadings.

8. Z REACTIVITY MEASUREMENTS AND ANALYSIS

8. Z. I AREAS OF AGREEMENT BETWEEN EXPERIMENT AND

ANALYSIS

Most of the reactivity worths analyzed show good agreement with

the measured results This agreement corroborates both the experi-

mental and analytical methods and no further discussion will be made of !

these measur_rnents. The following measurements fall into this cate-
J

gory:

a. Safety and regulating rod worths

b. Poison worth as a function of radius

c. Poison worth as a function of concentration

d. Top reflector worth.

Other measurements were made which were not analyzed in this

phase of the contract. They may be analyzed in the future, if warranted.

They include:
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a. Worth of boron poison substituted for cadmium

b. Worth of boron-stainless steel substituted for tungsten

c. Individual worth of fuel rings D and E.

8. Z. 2 PROMPT NEUTRON LIFETIME

The comparison of the measured and calculated values of the

prompt neutron lifetime given in Table 6. II shows the calculated values

to be about 15% low in every case but that of the 85-element (no cadmium)

core. The agreement in this case, however, may be fortuitous, since

the calculation depended upon a buckling iteration technique in a high

leakage core. Nevertheless, the agreement in this case suggests that

the error might lie in either the treatment of leakage or in the cadmium

cross sections. The latter possibility is very unlikely, since relatively

large changes in the disadvantage factors for cadmium have resulted in

virtually no change in the calculated lifetime. The first possibility

suggests that the results may improve through the use of two-dimensional

alpha calculations. This has not been attempted due to the high cost in-

volved. The reason for the discrepancy is, at present, unknown.

8. Z. 3 EXCESS REACTIVITY

The measurement of excess reactivity by the mapping of the in-

dividual cadmium poison tubes has proven to be an effective and apparently

accurate method. Comparison of the measured results to precritical

calculations as given in Table 6. 16 shows an error of about three dollars

of reactivity in the calculated values. The calculated values were ob-

tained in each case using the precritical methods, and thus are subject

to the considerations presented for criticalitycalculations in Section 8. I.

It is believed that the discrepancy between the measured and calculated

values listed in Table 6.16 can be entirely ascribed to the causes dis-

cussed in Section 8. l, and that the error can be virtually eliminated by

refined eigenvalue calculations.
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8. Z.4 FUEL ELEMENT COMPONENT WORTHS

The results shown in Tables 6.19 and 6. Z0 illustrate that central

fuel element component worths can be reasonably well predicted by per-

turbation analysis if the worths are small (less than say $0.40). Larger

changes, however, require consideration of local flux perturbations

caused by removal of the component. These larger changes can be

treated, for the central fuel element at least, by means of one-dimen-

sional eigenvalue calculations in which the central cell can be explicitly

represented. The worths of the components as calculated by the eigen-

value method are in fair agreement with the measurements.

Calculation of the removal worth of fuel element components in

the outer locations B-6 and A-5 gave results of lower accuracy even for

small worths. These discrepancies may be attributed to the local hetero-

geneities at the core edge which are largely lost in a one-dimensional

diffusion calculation.

It is believed that the data of Tables 6. 19 and 6. _-0 show reason-

able agreement within the limitations of one-dimensional diffusion cal-

culations and perturbation analysis, i

8. 2.5 SIMULATION EXPERIMENT i

The Simulation Experiment led to the specification of an enriched

tungsten cell configuration which was an almost exact match in reactivity

worth to the mockup cell. Because only five stages of the central fuel

element were replaced, possible differences in leakage between a com-

plete assembly of mockup elements and a complete assembly of pseudo-

: reference elements were not necessarily shown. These differences should

be of second order, however, since the two cells are identical in fuel and

HzO content. -.
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Analysis of the experiment did demonstrate a close match in the

infinite medium value of k , the pseudo-reference configuration having

a value only . 005 _k/k higher than the mockup. This close match lends

strong support to the methods of analysis, especially those concerned

with resonance absorption. As may be seen in Table 6.2Z, the pseudo-

reference element has more resonance absorption in tungsten which is

matched in the mockup element by resonance absorption in U Z38. This

match was one of the original intentions in the design of the mockup fuel

element.

Table 6. Z3, which illustrates the structure of the reactivity worths

oi the two fuel sections, is more illustrative of the actual experiment.

These calculations, which are normalized to the average axial worth,

illustrate again that the reactivity match is achieved by trading tungsten

absorptions in the pseudo-reference elements for U Z38 absorptions in

the mockup element, and that the mockup element is a close simulation

. in all cther respects.

8.3 FLUX AND POWER DISTRIBUTIONS

The general agreement between calculated and measured foil

activation data was good in the water-reflected cores. The power den-

sity within a fuel element, the radial power traverse, and the axial

copper activation data all compared well with the results of the corres-

ponding calculation. Significant discrepancies occurred only at the core-

reflector interface in the radial power traverse. The two high points

near the interface in Fig. 6. 11 are both measurements made on the outer-
J

most edge of an outer fuel ring; they directly face the reflector and con-

sequently are in a higher thermal flux than that calculated for the same

radius in a homogenized diffusion calculation. This discrepancy is thus

qualitatively under stood.
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The calculated gold cadmium ratios gave close agreement to the

measured values for two different pitches and at several locations in the

core. The agreement of these data also tends to corroborate the experi-

mental and analytical methods used.

The comparison of the experimental and calculated axial power

profiles in Fig. 6. 12 for the beryllium reflected core showed a signi-

ficant deviation near the bottom beryllium reflector. The discrepancy

may be caused in part by streaming of thermal neutrons up from the

solid reflector. However, there is little evidence of this effect in the

axial flux traverse of the water-reflected core, shown in Fig. 6. 10. At

present this discrepancy is unexplained.

8.4 TEMPERATURE COEFFICIENTS

The complexity of the structure of the temperature coefficient in

terms of its component parts is demonstrated in Tables 6.34 and 6.35.

Each component, except _, is greater than or approximately equal to the

net effect. The fast components, _ and p, are particularly large for

these cores, which could be anticipated from the large fraction of epi-

thermal fissions. The large positive effect associated with the thermal

utilization, and to a certain extent with _, is derived primarily from the

density reduction of the cadmium solution. The behavior of the temper-

ature coefficient in these cores, therefore, is quite sensitive to the cad-

mium concentration in the poison tubes.

It is seen in Table 6.33 that the effect of the change in thermal

disadvantage factors with temperature, which has not been considered

in the results presented in Tables 6.31 and 6.32, is significant. The

effect, which can be attributed to an increase in the magnitude of the

positive component associated with the thermal utilization, is a 25% in-

crease in the predicted reactivity at 100°C for the water-reflected core.

With the change in disadvantage factors taken into account, the calculated
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over-all temperature coefficient (ZY°C to 100°C) of the water-reflected

core is brought into good agreement with experiment. (Some reserva-

tion should be exercised here, as the 100°C measured value is based upon

a linear extrapolation. ) On the other hand, the 50°C and 70°C points for

the water-reflected cere are anomalously high, and the effect of consider-

ing the change in thermal disadvantage factors would be to further increase

the deviation from experiment. Although the water-reflected curve exhi-

bits a positive region, the positive peak occurs at 35°C, and crosses the

axis at approximately 43°C. The calculated positive reactivity at 50°C

remains unexplained.

The deviation from experiment of the 50°C and 100°C points for

the beryllium-reflected core would be expected to diminish with the in-

corporation of temperature dependent thermal disadvantage factors in

the analysis. This consideration suggests that the agreement at 70°C i

is misleading, and that with the incorporation of temperature dependent i

thermal disadvantage factors, this point would be high by approximately 1

20_0. The behavior of the leakage component between 50°C and 70°C,

shown in Table 6.35, lends additional credence to this conjecture. The

magnitude of this component is anomalously low, suggesting that PNL

at 70°C is high by approximately 0.15_0, but the reason for this is un-

known.

Comparison between Tables 6.34 and 6.35 indicates a significant

difference between the construction of the temperature coefficient of the

water-reflected core and the beryllium-reflected core. The higher com-

bined positive effect associated with f and _ for the beryllium-reflected

' core is largely due to the increased cadmium loading. The slight de-

crease in the positive effect associated with f (the thermal utilization

itself is lower because of the competition with cadmium for thermal

captures) is more than compensated by the large positive effect assoc-

iated with ¢, which is higher itself because of an increase in the mean

fission energy. These positive contributionsp however, are offset by

1966016284-373



8-24

the large, and unexpected, increase in the component associated with p.

No positive portion of the reactivity curve was observed in the water-

ceflected core. It is feltthat the positive portion observed in the water-

reflected core is eliminated by the increased negative component of the

nonleakage probability, PNL' between 27°C and 50°C for the beryllium-

reflected core. The difference between the calculated reflecting proper-

ties of water and beryllium arises _rimarily from the large difference

in the coefficients of expansion of the two materials (see Table 6.28).

Several sources of error are implicit in the calculations. The

effect of temperature dependent thermal disadvantage factors has already

been discussed. The effect of density cha_ges on the high energy disadvan-

tage factors and the small change in buckling due to increased leakage has

been neglected, but a single calculation of these effects at 100°C indicates

only a 6% error associated with their omission. The metal expansion has

been neglected in the calculation of the 100°C thermal disadvantage fac-

tors. The magnitude of this effect is unknown, but assumed to be insig-

nificant. The error associated with the termination of the buckling itera-

' tions after t:_esecond radial calculation is estimated to be less than 0.2_

in reactivity. Finally, a free linear expansion of the grid plate and of

the axial core support members has been assumed, since the degree of

restraint in the thermal expansion of the assembly is unknown. A rough

estimate of the contribution to the calculated reactivity from a free radial

expansion of the grid plate is approximately - 2.0¢ in reactivity.

It is concluded that the temperature behavior of the 3.0-in. pitch

cores is reasonably well understood. The gas and crystal kernels for

beryllium yield nearly identical results for the reactivity of the beryllium-

reflected core. The structure of the temperature coefficient from its

components is exceedingly complexw thus rendering predictions of the

temperature behavior of TWLIR cores inadvisable without a thorough and

careful analysis.
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8.5 MEASUREMENT OF THE ASYMPTOTIC DECAY CONSTANT

The deviation between the measured and calculated values of 0b,

the asymptotic prompt neutron decay constant, may be seen in Table

6.36. The reason for the - $I. 44 discrepancy in the just critical 0. 1255

molar case is primarily the one-dimensional method used in the calcula-

tions. As discussed in Section 8.1.7, a difference of approximately $I. 00

has been found between one- and two-dimensional calculations for this

core. Thus the discrepancy for this case amounts to approximately

- $0.44 from unknown causes. However, in the more heavily loaded sub-

critical cases, the error from unknown causes increases to - $I. 58 in

the 0. 1677 molar case and to - $2.35 in the 0.2899 molar case.

The reactivity of these cases was also obtained by mapping of

the cadmium worth. The results, given in Table 3, 6, are in reason-

able agreement with the results found by the pulsed neutron method, the

mapped values being about - $0.35 more subcritical in each case. Thus

the two different experimental determinations tend to confirm one an-

other.

The calculated values of the prompt neutron lifetime demonstrate

the same type of discrepancy. In the lifetime measurement, ¢_ is found -'_

in a core x¢ith a known reactivity. Thus in these measurements the ab- I

solute value of 0_ found by experiment is again smaller than that found

by calculation.

It is possible, as discussed in Section 7.2, that a two-dimensional

calculation of a may eliminate the discrepancy. Other potential sources

of error which remain to be investigated are the change in th_ average

inverse velocity in the outermost row of fuel elements and the possible

interference, in the more heavily loaded cores, of higher modes.

At present, these differences between the measured and calcu-

lated values of _ are the outstanding discrepancy in the calculation of

unzoned cores.

i
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IX. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

9. 1 REVIEW AND MEASUREMENT OF CROSS SECTIONS

The compilation and review of nuclear data for the isotopes of

tungsten, and for beryllium, aluminum, cadmium, U Z35 and U z38 have

been published in various topical reports listed in Section I. Furthermore,
18Z

the neutron capture cross section from 0. 01 to I0 eV for the isotopes W ,

W 183, W TM and W 186 have been measured and analyzed in Section 5.3 of

this report. These cross section data are believed to be of sufficient

accuracy and detail for nearly all design purposes for the tungsten, water-

moderated reactor concept. Further work is required, however, in two

areas. The importance of W 183 in the determination of the Doppler coef-

ficient of the enriched tungsten suggests that the resonance parameters of

this isotope should be measured up to at least 1.0 keV. The same tech-

niques as used for the 0.01 to I0 eV range should be used to obtain a con-

sistent set of nuclear data. The second area which requires more work is

the well known problem of the U235 epithermal cross sections. This prob-

lem was discussed in Section 5. Z where it was shown that integral measure-

ments of the values of u, the ratio of the infinite dilute epithermal capture

integral to the fission integral, favor a value about 10e/0 lower than that

found by analysis of the differential data. The discrepancy is under investi-

gation at several laboratories: as the results become available, further

analysis will be required to understand and resolve the potential error which

may now lie in the epithermal U235 cross section data.

9-I
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,9. Z ANALYSIS OF CRITICAL EXPERIMENTS AT THE LEWIS
RESEARCH CENTER

The analysis of the ten Lewis critical experiments presented in

Section VII proved that the small unvoided cores could be well predicted

using one-dimensional transport theory. It was also demonstrated that

homogenization techniques were inadequate to treat the neutron stream-

ing in cores containing large voids; the use of Behrens and Benoist cor-

rections for anisotropic diffusion overestimated the streaming. Finally,

the analysis indicated that the presence of a thin tungsten tube inside the

voided tube apparently eliminated neutron streaming.

It is concluded that homogenization methods are inadequate to

treat neutron streaming in these cores; a more sophisticated treatment

of the axial leakage involving two-dimensional transport calculations of

the voided cells remains to be tried.

9.3 CRITICALITY MEASUREMENTS AND ANALYSIS

The agreement between criticality measurements and analysis

has been found to be good. The methods of calculation for the unzoned

critical assemblies have been extensively investigated and found to be

adequate for all criticality design purposes.

The precritical analyses gave eigenvalues within 2% of the mea-

surements, yet were based on relatively inexpensive methods. The

errors associated with these survey methods are known and can be vir-

tnally elimin_ ted by using more sophisticated calculational techniques.

These refined methods are arduous and time consuming, however, and

should be used primarily as a check of the accuracy of the survey cal-

culations.
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9.4 REACTIVITY MEASUREMENTS AND ANALYSIS

The good agreement between analysis and experiment has shown

that the calculational methods are quite adequate for the prediction of

control rod worth, poison tube worth, fuel element component worths,

and to top reflector worth in these cores. Furthermore, the measure-

ment of the excess reactivity by the mapping of individual poison tube

worths has given accurate estimates of the excess reactivity available

in these cores.

A 15_0discrepancy exists between calculated and measured values

of the prompt neutron lifetime; the cause is at present unknown and should

be further investigated, possibly by means of two-dimensional diffusion

calculations.

The simulation experiment proved that experimentally matched

mockup and pseudo reference elements had nearly identical calculated

values of ka,. This agreement tends to-co_irIn:the methods of analysis.

9.5 FLUX AND POWER DISTRIBUTIONS

The agreement between calculated and measured foil activations

was good in the water-reflected cores, the only significant deviation

occurring at the core reflector interface. The problem of accurately

,)redicting power densities at the radial interface is well known; the

rapidly changing therrnal neutron spectrum and the local heterogeneities

contribute to make an exact solution difficult. However, because the

outer row of fuel elements comprises nearly Z57, of the core, it is im-

portant to find better methods to predict power densities in these outer-

most elements.

The measured axial power distribution in the beryllium-reflected

core showed a significant deviation from calculated values near the

bottom beryllium reflector. The cause of this discrepancy is not under-

stood. Further investigation is warranted, due to the importance of

correctly predicting axial power distributions in zoned cores.
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9.6 TEMPERATURE COEFFICIENTS

An extensive analysis of the temperature coefficient in the water-

reflected and beryllium-reflected cores has led to a reasonable under-

standing of the temperature behavior of these assemblies. A strong nega-

tive temperature coefficient of - 1.0_/°C is available in the beryllium-

reflected core, and calculational methods exist to determine the temper-

ature coefficient in differing geometries. However, construction of the

temperature coefficient from its components has proven to be quite com-

plex, and predictions of the temperature behavior of these cores is in-

advisable without a thorough and careful analysis.

9.7 ASYMPTOTIC DECAY CONSTANT

A persistent discrepancy has been found between the measured

and calculated values of _, the asymptotic prompt neutron decay con-

stant. The cause of this discrepancy, which also is noted in the prompt

neutron lifetime, is unknown, and further investigation of it is warranted.

At present, these differences between the measured and calculated values

of_ are the outstanding discrepancy in the calculation of unzoned cores.

9.8 CALCULATION OF ZONED CORES

It is believed that the analytical methods used for the unzoned

cores can be extended in general, to the analysis of zoned cores. The

use of one-dimer, sional leakage synthesis calculations will probably not

be possible;.however, either two-dimensional diffusion calculations or

flux-synthesis techniques may be required instead to calculate power

density profiles and eigenvalues.
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There are several possible ways to flatten or shape the power

distribution in these cores. They include pitch variation, fuel distribu-

tion, and poison distribution. These methods should all be carefully

analyzed and experiments conducted on the optimum designs.
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